Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Genes (Basel) ; 13(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36553534

RESUMO

The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5-9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: -4.0 kg (-2.9%) in patient 1, and -1.8 kg (-1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (-2.9 kg; -2.8%). Phentermine treatment produced similar weight loss in six carriers (-12.7 kg; 15.5%) and 18 non-carriers (-11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers.


Assuntos
Cirurgia Bariátrica , Fentermina , Receptor Tipo 4 de Melanocortina , Adulto , Humanos , Mutação , Obesidade/genética , Obesidade/cirurgia , Redução de Peso/genética , Receptor Tipo 4 de Melanocortina/genética
3.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797133

RESUMO

Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). Here, we aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-keto acids (BCKAs), and hepatic BCKDK expression are associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKAs, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 patients with bariatric surgery with severe obesity and scored liver biopsy samples. Metabolite principal component analysis factors, BCKAs, branched-chain amino acids (BCAAs), and the BCKA/BCAA ratio were tested for associations with steatosis grade and presence of nonalcoholic steatohepatitis (NASH). Of all analytes tested, only the Val-derived BCKA, α-keto-isovalerate, and the BCKA/BCAA ratio were associated with both steatosis grade and NASH. Gene expression analysis in liver samples from 2 independent bariatric surgery cohorts showed that hepatic BCKDK mRNA expression correlates with steatosis, ballooning, and levels of the lipogenic transcription factor SREBP1. Experiments in AML12 hepatocytes showed that SREBP1 inhibition lowered BCKDK mRNA expression. These findings demonstrate that higher plasma levels of BCKA and hepatic expression of BCKDK are features of human NAFLD/NASH and identify SREBP1 as a transcriptional regulator of BCKDK.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Aminoácidos de Cadeia Ramificada/metabolismo , Humanos , Cetoácidos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , RNA Mensageiro
5.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836148

RESUMO

Dietary fiber (DF) is a major substrate for the gut microbiota that contributes to metabolic health. Recent studies have shown that diet-metabolic phenotype effect might be related to individual gut microbial profiles or enterotypes. Thus, the aim of this study was to examine whether microbial enterotypes modify the association between DF intake and metabolic traits. This cross-sectional study included 204 children (6-12 years old) and 75 adults (18-60 years old). Habitual DF intake was estimated with a Food Frequency Questionnaire and biochemical, clinical and anthropometric data were obtained. Gut microbiota was assessed through 16S sequencing and participants were stratified by enterotypes. Correlations adjusting for age and sex were performed to test the associations between dietary fiber components intake and metabolic traits. In children and adults from the Prevotella enterotype, a nominal negative correlation of hemicellulose intake with insulin and HOMA-IR levels was observed (p < 0.05), while in individuals of the other enterotypes, these associations were not observed. Interestingly, the latter effect was not related to the fecal short-chain-fatty acids profile. Our results contribute to understanding the enterotype influence on the diet-phenotype interaction, which ultimate could provide evidence for their use as potential biomarkers for future precision nutrition strategies.


Assuntos
Fibras na Dieta/análise , Ingestão de Alimentos/fisiologia , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Criança , Estudos Transversais , Inquéritos sobre Dietas , Ingestão de Alimentos/etnologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Resistência à Insulina/etnologia , Masculino , México/etnologia , Pessoa de Meia-Idade , Fenótipo , RNA Ribossômico 16S/análise , Adulto Jovem
6.
Mol Med ; 27(1): 108, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525937

RESUMO

BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Faecalibacterium prausnitzii/fisiologia , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Aminoácidos de Cadeia Ramificada/metabolismo , Biomarcadores , Pesos e Medidas Corporais , Criança , Feminino , Humanos , Resistência à Insulina , Masculino , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Obesidade/metabolismo , Vigilância em Saúde Pública
7.
Arterioscler Thromb Vasc Biol ; 41(9): 2494-2508, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34233476

RESUMO

Objective: Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results: A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions: This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.


Assuntos
HDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Hiperlipoproteinemia Tipo II/genética , Proteínas de Transporte de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idade de Início , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Fatores de Risco de Doenças Cardíacas , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Masculino , Análise da Randomização Mendeliana , México/epidemiologia , Camundongos , Pessoa de Meia-Idade , Proteínas de Transporte de Nucleotídeos/metabolismo , Fenótipo , Medição de Risco
8.
Nat Metab ; 3(7): 940-953, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34282353

RESUMO

Males and females exhibit striking differences in the prevalence of metabolic traits including hepatic steatosis, a key driver of cardiometabolic morbidity and mortality. RNA methylation is a widespread regulatory mechanism of transcript turnover. Here, we show that presence of the RNA modification N6-methyladenosine (m6A) triages lipogenic transcripts for degradation and guards against hepatic triglyceride accumulation. In male but not female mice, this protective checkpoint stalls under lipid-rich conditions. Loss of m6A control in male livers increases hepatic triglyceride stores, leading to a more 'feminized' hepatic lipid composition. Crucially, liver-specific deletion of the m6A complex protein Mettl14 from male and female mice significantly diminishes sex-specific differences in steatosis. We further surmise that the m6A installing machinery is subject to transcriptional control by the sex-responsive BCL6-STAT5 axis in response to dietary conditions. These data show that m6A is essential for precise and synchronized control of lipogenic enzyme activity and provide insights into the molecular basis for the existence of sex-specific differences in hepatic lipid traits.


Assuntos
Adenosina/análogos & derivados , Metabolismo Energético , Regulação da Expressão Gênica , Característica Quantitativa Herdável , Transcrição Gênica , Adenosina/metabolismo , Animais , Feminino , Metabolismo dos Lipídeos , Masculino , Metilação , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT5/metabolismo , Fatores Sexuais , Transdução de Sinais
9.
Cell Mol Gastroenterol Hepatol ; 11(2): 389-406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32942044

RESUMO

BACKGROUND & AIMS: The etiology of nonalcoholic fatty liver disease (NAFLD) is poorly understood, with males and certain populations exhibiting markedly increased susceptibility. Using a systems genetics approach involving multi-omic analysis of ∼100 diverse inbred strains of mice, we recently identified several candidate genes driving NAFLD. We investigated the role of one of these, liver pyruvate kinase (L-PK or Pklr), in NAFLD by using patient samples and mouse models. METHODS: We examined L-PK expression in mice of both sexes and in a cohort of bariatric surgery patients. We used liver-specific loss- and gain-of-function strategies in independent animal models of diet-induced steatosis and fibrosis. After treatment, we measured several metabolic phenotypes including obesity, insulin resistance, dyslipidemia, liver steatosis, and fibrosis. Liver tissues were used for gene expression and immunoblotting, and liver mitochondria bioenergetics was characterized. RESULTS: In both mice and humans, L-PK expression is up-regulated in males via testosterone and is strongly associated with NAFLD severity. In a steatosis model, L-PK silencing in male mice improved glucose tolerance, insulin sensitivity, and lactate/pyruvate tolerance compared with controls. Furthermore, these animals had reduced plasma cholesterol levels and intrahepatic triglyceride accumulation. Conversely, L-PK overexpression in male mice resulted in augmented disease phenotypes. In contrast, female mice overexpressing L-PK were unaffected. Mechanistically, L-PK altered mitochondrial pyruvate flux and its incorporation into citrate, and this, in turn, increased liver triglycerides via up-regulated de novo lipogenesis and increased PNPLA3 levels accompanied by mitochondrial dysfunction. Also, L-PK increased plasma cholesterol levels via increased PCSK9 levels. On the other hand, L-PK silencing reduced de novo lipogenesis and PNPLA3 and PCSK9 levels and improved mitochondrial function. Finally, in fibrosis model, we demonstrate that L-PK silencing in male mice reduced both liver steatosis and fibrosis, accompanied by reduced de novo lipogenesis and improved mitochondrial function. CONCLUSIONS: L-PK acts in a male-specific manner in the development of liver steatosis and fibrosis. Because NAFLD/nonalcoholic steatohepatitis exhibit sexual dimorphism, our results have important implications for the development of personalized therapeutics.


Assuntos
Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/genética , Piruvato Quinase/genética , Adulto , Animais , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Inativação Gênica , Predisposição Genética para Doença , Humanos , Fígado/enzimologia , Fígado/patologia , Mutação com Perda de Função , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Piruvato Quinase/metabolismo , Fatores Sexuais , Regulação para Cima
10.
Gut Microbes ; 11(4): 900-917, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31973685

RESUMO

BACKGROUND: Gut microbiota, by influencing multiple metabolic processes in the host, is an important determinant of human health and disease. However, gut dysbiosis associated with metabolic complications shows inconsistent patterns. This is likely driven by factors shaping gut microbial composition that have largely been under-evaluated, at a population level, in school-age children, especially from developing countries. RESULTS: Through characterization, by 16S sequencing, of the largest gut microbial population-based school-aged children cohort in Latin America (ORSMEC, N = 926, aged 6-12 y), we identified associations of 14 clinical and environmental covariates (PFDR<0.1), collectively explaining 15.7% of the inter-individual gut microbial variation. Extrinsic factors such as markers of socioeconomic status showed a major influence in the most abundant taxa and in the enterotypes' distribution. Age was positively correlated with higher diversity, but only in normal-weight children (rho = 0.138, P =2 × 10-3). In contrast, this correlation although not significant, was negative in overweight and obese children (rho = -0.125, P = 0.104 and rho = -0.058, P = 0.409, respectively). Finally, co-abundance groups (CAGs) were associated with the presence of metabolic complications. CONCLUSIONS: Our study offers evidence that the presence of overweight and obesity could impair the microbial diversity maturation associated with age. Furthermore, it provides novel results toward a better understanding of gut microbiota in the pediatric population that will ultimately help to develop therapeutic approaches to improve metabolic status.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Adiposidade , Adolescente , Bactérias/classificação , Bactérias/genética , Variação Biológica da População , Criança , Estudos Transversais , Dieta , Feminino , Humanos , Estilo de Vida , Masculino , Síndrome Metabólica/microbiologia , Obesidade/microbiologia , Obesidade Infantil/microbiologia , Fatores Socioeconômicos
11.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398325

RESUMO

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Assuntos
Comunicação Celular/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Animais , Reprogramação Celular/genética , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/genética , Análise de Célula Única
12.
Front Cardiovasc Med ; 6: 91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380393

RESUMO

Cardiovascular diseases are the leading cause of death around the world. Despite the larger number of genes and loci identified, the precise mechanisms by which these genes influence risk of cardiovascular disease is not well understood. Recent advances in the development and optimization of high-throughput technologies for the generation of "omics data" have provided a deeper understanding of the processes and dynamic interactions involved in human diseases. However, the integrative analysis of "omics" data is not straightforward and represents several logistic and computational challenges. In spite of these difficulties, several studies have successfully applied integrative genomics approaches for the investigation of novel mechanisms and plasma biomarkers involved in cardiovascular diseases. In this review, we summarized recent studies aimed to understand the molecular framework of these diseases using multi-omics data from mice and humans. We discuss examples of omics studies for cardiovascular diseases focused on the integration of genomics, epigenomics, transcriptomics, and proteomics. This review also describes current gaps in the study of complex diseases using systems genetics approaches as well as potential limitations and future directions of this emerging field.

13.
Int J Cardiol ; 279: 168-173, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30305239

RESUMO

BACKGROUND: Serum uric acid (SUA) is a heritable trait associated with cardiovascular risk factors and coronary artery disease (CAD). Genome wide association studies (GWAS) have identified several genes associated with SUA, mainly in European populations. However, to date there are few GWAS in Latino populations, and the role of SUA-associated single nucleotide polymorphisms (SNPs) in cardiovascular disease has not been studied in the Mexican population. METHODS: We performed genome-wide SUA association study in 2153 Mexican children and adults, evaluated whether genetic effects were modified by sex and obesity, and used a Mendelian randomization approach in an independent cohort to study the role of SUA modifying genetic variants in premature CAD. RESULTS: Only two loci were associated with SUA levels: SLC2A9 (ß = -0.47 mg/dl, P = 1.57 × 10-42 for lead SNP rs7678287) and ABCG2 (ß = 0.23 mg/dl, P = 2.42 × 10-10 for lead SNP rs2231142). No significant interaction between SLC2A9 rs7678287 and ABCG2 rs2231142 genotypes and obesity was observed. However, a significant ABCG2 rs2231142 genotype*sex interaction (P = 0.001) was observed in adults but not in children. Although SUA levels were associated with premature CAD, metabolic syndrome and decreased glomerular filtration rate (eGFR), only ABCG2 rs2231142 was associated with decreased eGFR in the premature CAD group. CONCLUSIONS: SUA elevation was independently associated with premature CAD, metabolic syndrome and decreased eGFR in the Mexican population. However, a Mendelian randomization approach using the lead SUA-associated SNPs (SLC2A9 and ABCG2) did not support a causal role of elevated SUA levels for premature CAD.


Assuntos
Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Ácido Úrico/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Criança , Doença da Artéria Coronariana/epidemiologia , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana/métodos , México/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem
14.
Nutrients ; 10(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388780

RESUMO

Genome-wide association studies (GWAS) have identified copy number variants (CNVs) associated with obesity in chromosomal regions 1p31.1, 10q11.22, 11q11, 16p12.3, and recently 1p21.1, which contains the salivary amylase gene (AMY1). Recent evidence suggests this enzyme may influence gut microbiota composition through carbohydrate (mainly starch) degradation. The role of these CNVs in obesity has been scarcely explored in the Latino population, and thus the aim of our study was to evaluate the association of 1p31.1, 10q11.22, 11q11, 16p12.3 and 1p21.1 CNVs with obesity in 921 Mexican children, to replicate significant associations in 920 Mexican adults, and to analyze the association of AMY1 copy number with gut microbiota in 75 children and 45 adults. Of the five CNVs analyzed, 1q11 CNV was significantly associated with obesity in children, but not in adults. Only AMY1 CNV was significantly associated with obesity in both age groups. Moreover, gut microbiota analyses revealed a positive correlation between AMY1 copy number and Prevotella abundance. This genus has enzymes and gene clusters essential for complex polysaccharide degradation and utilization. To our knowledge, this is the first study to analyze the association of these five CNVs in the Mexican population and to report a correlation between AMY1 CN and gut microbiota in humans.


Assuntos
Variações do Número de Cópias de DNA , Microbioma Gastrointestinal/genética , Predisposição Genética para Doença , Obesidade/genética , Prevotella , alfa-Amilases Salivares/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Obesidade/epidemiologia , Adulto Jovem
15.
Hepatology ; 68(6): 2182-2196, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29907965

RESUMO

We report the genetic analysis of a "humanized" hyperlipidemic mouse model for progressive nonalcoholic steatohepatitis (NASH) and fibrosis. Mice carrying transgenes for human apolipoprotein E*3-Leiden and cholesteryl ester transfer protein and fed a "Western" diet were studied on the genetic backgrounds of over 100 inbred mouse strains. The mice developed hepatic inflammation and fibrosis that was highly dependent on genetic background, with vast differences in the degree of fibrosis. Histological analysis showed features characteristic of human NASH, including macrovesicular steatosis, hepatocellular ballooning, inflammatory foci, and pericellular collagen deposition. Time course experiments indicated that while hepatic triglyceride levels increased steadily on the diet, hepatic fibrosis occurred at about 12 weeks. We found that the genetic variation predisposing to NASH and fibrosis differs markedly from that predisposing to simple steatosis, consistent with a multistep model in which distinct genetic factors are involved. Moreover, genome-wide association identified distinct genetic loci contributing to steatosis and NASH. Finally, we used hepatic expression data from the mouse panel and from 68 bariatric surgery patients with normal liver, steatosis, or NASH to identify enriched biological pathways. Conclusion: The pathways showed substantial overlap between our mouse model and the human disease.


Assuntos
Apolipoproteína E3/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Aminoácidos/metabolismo , Animais , Colesterol/metabolismo , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Hiperlipidemias/complicações , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Exp Mol Pathol ; 104(1): 50-58, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307798

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the accumulation of extra fat in liver cells not caused by alcohol. Elevated transaminase levels are common indicators of liver disease, including NAFLD. Previously, we demonstrated that PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), and GCKR (rs780094) are associated with elevated transaminase levels in overweight/obese Mexican adults. We investigated the association between 288 SNPs identified in genome-wide association studies and risk of elevated transaminase levels in an admixed Mexican-Mestizo sample of 178 cases of NAFLD and 454 healthy controls. The rs2896019, rs12483959, and rs3810622 SNPs in PNPLA3 and rs1227756 in COL13A1 were associated with elevated alanine aminotransferase (ALT, ≥40IU/L). A polygenic risk score (PRS) based on six SNPs in the ADIPOQ, COL13A1, PNPLA3, and SAMM50 genes was also associated with elevated ALT. Individuals carrying 9-12 risk alleles had 65.8% and 48.5% higher ALT and aspartate aminotransferase (AST) levels, respectively, than those with 1-4 risk alleles. The PRS showed the greatest risk of elevated ALT levels, with a higher level of significance than the individual variants. Our findings suggest a significant association between variants in COL13A1, ADIPOQ, SAMM50, and PNPLA3, and risk of NAFLD/elevated transaminase levels in Mexican adults with an admixed ancestry. This is the first study to examine high-density single nucleotide screening for genetic variations in a Mexican-Mestizo population. The extent of the effect of these variations on the development and progression of NAFLD in Latino populations requires further analysis.


Assuntos
Adiponectina/genética , Alanina Transaminase/genética , Aspartato Aminotransferases/genética , Colágeno Tipo XIII/genética , Lipase/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Estudos de Casos e Controles , Etnicidade/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , México , Pessoa de Meia-Idade , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Herança Multifatorial/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Polimorfismo de Nucleotídeo Único
17.
Nat Commun ; 8(1): 1005, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044207

RESUMO

Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained below 2,000 individuals for up to 10,000 years ago. The proportion of missense variants predicted as damaging is higher for undescribed (~ 30%) than for previously reported variants (~ 15%). Several variants previously associated with biological traits are highly frequent in the Native American genomes. These findings suggest that the demographic and adaptive processes that occurred in these groups shaped their genetic architecture and could have implications in biological processes of the Native Americans and Mestizos of today.


Assuntos
Etnicidade/genética , Variação Genética , Genética Populacional/métodos , Genoma Humano/genética , Frequência do Gene , Genótipo , Migração Humana , Humanos , México , Modelos Genéticos , Fatores de Tempo
18.
Sci Rep ; 7(1): 5607, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717206

RESUMO

Childhood obesity is associated with a number of metabolic abnormalities leading to increased cardiovascular risk. Metabolites can be useful as early biomarkers and new targets to promote early intervention beginning in school age. Thus, we aimed to identify metabolomic profiles associated with obesity and obesity-related metabolic traits. We used data from the Obesity Research Study for Mexican children (ORSMEC) in Mexico City and included a case control (n = 1120), cross-sectional (n = 554) and a longitudinal study (n = 301) of 6-12-year-old children. Forty-two metabolites were measured using electrospray MS/MS and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical and biochemical parameters. Principal component analysis showed a serum amino acid signature composed of arginine, leucine/isoleucine, phenylalanine, tyrosine, valine and proline significantly associated with obesity (OR = 1.57; 95%CI 1.45-1.69, P = 3.84 × 10-31) and serum triglycerides (TG) (ß = 0.067, P = 4.5 × 10-21). These associations were validated in the cross-sectional study (P < 0.0001). In the longitudinal cohort, the amino acid signature was associated with serum TG and with the risk of hypertriglyceridemia after 2 years (OR = 1.19; 95%CI 1.03-1.39, P = 0.016). This study shows that an amino acid signature significantly associated with childhood obesity, is an independent risk factor of future hypertriglyceridemia in children.


Assuntos
Aminoácidos/metabolismo , Biomarcadores/metabolismo , Hipertrigliceridemia/diagnóstico , Metaboloma , Obesidade Infantil/complicações , Aminoácidos/análise , Antropometria , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Humanos , Hipertrigliceridemia/epidemiologia , Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Estudos Longitudinais , Masculino , México/epidemiologia , Fatores de Risco
19.
BMC Med Genet ; 18(1): 46, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464932

RESUMO

BACKGROUND: The aim of this study was to explore whether interactions between FTO rs9939609 and ABCA1 rs9282541 affect BMI and waist circumference (WC), and could explain previously reported population differences in FTO-obesity and FTO-BMI associations in the Mexican and European populations. METHODS: A total of 3938 adults and 636 school-aged children from Central Mexico were genotyped for both polymorphisms. Subcutaneous and visceral adipose tissue biopsies from 22 class III obesity patients were analyzed for FTO and ABCA1 mRNA expression. Generalized linear models were used to test for associations and gene-gene interactions affecting BMI, WC and FTO expression. RESULTS: FTO and ABCA1 risk alleles were not individually associated with higher BMI or WC. However, in the absence of the ABCA1 risk allele, the FTO risk variant was significantly associated with higher BMI (P = 0.043) and marginally associated with higher WC (P = 0.067), as reported in Europeans. The gene-gene interaction affecting BMI and WC was statistically significant only in adults. FTO mRNA expression in subcutaneous abdominal adipose tissue according to ABCA1 genotype was consistent with these findings. CONCLUSIONS: This is the first report showing evidence of FTO and ABCA1 gene variant interactions affecting BMI, which may explain previously reported population differences. Further studies are needed to confirm this interaction.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Índice de Massa Corporal , Epistasia Genética , Indígenas Norte-Americanos/genética , Adulto , Criança , Feminino , Humanos , Masculino , México
20.
J Hum Genet ; 62(3): 413-418, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27881840

RESUMO

Obesity is a major public health concern in Mexico and worldwide. Although the estimated heritability is high, common variants identified by genome-wide association studies explain only a small proportion of this heritability. A combination of linkage and association strategies could be a more robust and powerful approach to identify other obesity-susceptibility variants. We thus sought to identify novel genetic variants associated with obesity-related traits in the Mexican population by combining these methods. We performed a genome-wide linkage scan for body mass index (BMI) and other obesity-related phenotypes in 16 Mexican families using the Sequential Oligogenic Linkage Analysis Routines Program. Associated single-nucleotide polymorphisms (SNPs) were tested for associations in an independent cohort. Two suggestive BMI-linkage peaks (logarithm of odds ⩾1.5) were observed at chromosomal regions 11q13 and 13q22. Only rs614080 in the 11q13 region was significantly associated with BMI and related traits in these families. This association was also significant in an independent cohort of Mexican adults. Moreover, this variant was significantly associated with GSTP1 gene expression levels in adipose tissue. In conclusion, the rs614080 SNP near the GSTP1 gene was significantly associated with BMI and GSTP1 expression levels in the Mexican population.


Assuntos
Predisposição Genética para Doença , Glutationa S-Transferase pi/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Cromossomos Humanos Par 11/química , Família , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA