Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(9): 3369-3377, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697098

RESUMO

A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Compostos Heterocíclicos/química , Humanos , Articulação do Joelho/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos
2.
Mol Imaging Biol ; 22(2): 324-334, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31286352

RESUMO

PURPOSE: Blood-brain barrier disruption (BBBD) is of interest for treating neurodegenerative diseases and tumors by enhancing drug delivery. Focused ultrasound (FUS) is a powerful method to alleviate BBB challenges; however, the detection of BBB opening by non-invasive methods remains limited. The purpose of this work is to demonstrate that 3D transcranial color Doppler (3DCD) and photoacoustic imaging (PAI) combined with custom-made nanoparticle (NP)-mediated FUS delivery can detect BBBD in mice. PROCEDURES: We use MRI and stereotactic ultrasound-mediated BBBD to create and confirm four openings in the left hemisphere and inject intravenously indocyanine green (ICG) and three sizes (40 nm, 100 nm, and 240 nm in diameter) of fluorophore-labeled NPs. We use PAI and fluorescent imaging (FI) to assess the spatial distribution of ICG/NPs in tissues. RESULTS: A reversible 41 ± 12 % (n = 8) decrease in diameter of the left posterior cerebral artery (PCA) relative to the right after FUS treatment is found using CD images. The spectral unmixing of photoacoustic images of the in vivo (2 h post FUS), perfused, and ex vivo brain reveals a consistent distribution pattern of ICG and NPs at *FUS locations. Ex vivo spectrally unmixed photoacoustic images show that the opening width is, on average, 1.18 ± 0.12 mm and spread laterally 0.49 ± 0.05 mm which correlated well with the BBB opening locations on MR images. In vivo PAI confirms a deposit of NPs in tissues for hours and potentially days, is less sensitive to NPs of lower absorbance at a depth greater than 3 mm and too noisy with NPs above an absorbance of 85.4. FI correlates well with ex vivo PAI to a depth of 3 mm in tissues for small NPs and 4.74 mm for large NPs. CONCLUSIONS: 3DCD can monitor BBBD over time by detecting reversible anatomical changes in the PCA. In vivo 3DPAI at 15 MHz combined with circulating ICG and/or NPs with suitable properties can assess BBB opening 2 h post FUS.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Artérias Cerebrais/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Técnicas Fotoacústicas , Ultrassonografia Doppler , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento Tridimensional , Verde de Indocianina , Imageamento por Ressonância Magnética , Camundongos , Microbolhas , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/terapia
3.
Mol Imaging Biol ; 20(2): 230-239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28956265

RESUMO

PURPOSE: Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)-a unique class of gas-filled protein nanostructures-have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents. PROCEDURES: We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice. RESULTS: Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES. CONCLUSIONS: These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound.


Assuntos
Acústica , Nanoestruturas/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Animais , Feminino , Fluorescência , Imageamento Tridimensional , Fígado/diagnóstico por imagem , Camundongos , Baço/diagnóstico por imagem , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
4.
Ultrasound Med Biol ; 30(10): 1307-19, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15582230

RESUMO

Mouse blood imaged using high-frequency ultrasound (US) is more echogenic in embryos than in adults. Studying changes in blood echogenicity in embryos may be of fundamental interest in studies on the genetic regulation of normal and abnormal blood development in mutant mice. Embryonic red blood cells (RBCs) are large and nucleated in midgestation but decrease in size and become enucleated as they mature. We therefore hypothesised that these structural alterations are responsible for variations in echogenicity of embryonic blood with gestational age and development. The objective of the current study was to quantify these structural changes in echogenicity (echo brightness) and apparent integrated backscatter (AIB) from embryonic blood at high US frequencies in vivo in mice. Results from anaesthetised pregnant mice studied using transcutaneous US showed that echogenicity of embryonic blood in the heart, aorta and umbilical cord and AIB within the heart chambers peaked at embryonic day (ED) 13.5 and then decreased progressively toward term. Between EDs 13.5 and 17.5 (near term), RBC mean cell volume decreased from 133 to 109 fL, haematocrit increased from 12 to 34%, and the percentage of nucleated RBCs decreased from 59 to 2%. Relative to younger ages, RBC nuclei at ED 13.5 were small and dense (pyknotic) which may have contributed to the peak in echogenicity and AIB at this age. To calculate the AIB, radiofrequency (RF) signals with centre frequencies of 28 MHz and 35 MHz were integrated over the 16- to 35-MHz and 21- to 42-MHz frequency range, respectively. At 28 MHz, mean apparent integrated backscatter of blood in the embryonic heart increased significantly from 0.0023 +/- 0.0004 Sr.cm(-1) (mean +/- SEM) at ED 12.5 to peak at 0.0037 +/- 0.0005 Sr.cm(-1) at ED 13.5. The mean AIB then decreased progressively with advancing gestation to 0.0002 +/- 0.0001 Sr.cm(-1) at ED 17.5. At 35 MHz, the mean AIB changed similarly with gestational age, except that values were lower than at 28 MHz at all ages. Higher attenuation of US at 35 MHz than at 28 MHz in tissue likely accounted for the lower AIB of blood insonified at 35 MHz. We speculate that developmental changes in red cell morphology are responsible for the observed changes in echogenicity and AIB of embryonic blood with gestational age in mice.


Assuntos
Sangue Fetal/diagnóstico por imagem , Animais , Aorta/embriologia , Núcleo Celular/diagnóstico por imagem , Ecocardiografia , Eritrócitos/diagnóstico por imagem , Eritrócitos/fisiologia , Feminino , Sangue Fetal/fisiologia , Idade Gestacional , Coração/embriologia , Camundongos , Gravidez , Ultrassonografia Pré-Natal/métodos
5.
Vet Radiol Ultrasound ; 45(6): 568-73, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15605851

RESUMO

The purpose of this study was to evaluate color- and spectral Doppler ultrasound in the establishment of normal functional cardiovascular development features in the mouse fetus. Mouse fetuses (129Sv strain) were studied in utero between embryonic day (EDs) 9.5 and 19.5. Time-velocity curves were derived from Doppler interrogation of the aorta and umbilical artery. The sample volume was accurately placed on the vessels of interest based on color-Doppler images. From these curves, the following parameters were obtained: heart rate (HR), acceleration time (AT), and deceleration time (DT). HR increased between EDs 9.5 and 19.5 from 102.9 to 303.2 b.p.m. For the other parameters, the most significant change observed was the increase of DT in the umbilical artery at the end of pregnancy, corresponding to the appearance of a diastolic flow. We report the use of a commercially available, clinical, ultrasound unit to obtain quantitative data on the cardiovascular development in the mouse fetus. These results may be useful for the recognition of in utero cardiovascular dysfunction in transgenic or knock-out fetus.


Assuntos
Feto/irrigação sanguínea , Artérias Umbilicais/fisiologia , Veias Umbilicais/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/veterinária , Feminino , Camundongos , Gravidez , Fluxo Pulsátil , Valores de Referência , Ultrassonografia Doppler em Cores/veterinária , Artérias Umbilicais/embriologia , Veias Umbilicais/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA