Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Photonics ; 10(6): 1687-1693, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363633

RESUMO

Spontaneous Brillouin scattering in bulk crystalline solids is governed by the intrinsic selection rules locking the relative polarization of the excitation laser and the Brillouin signal. In this work, we independently manipulate the polarization of the two by employing polarization-sensitive optical resonances in elliptical micropillars to induce a wavelength-dependent rotation of the polarization states. Consequently, a polarization-based filtering technique allows us to measure acoustic phonons with frequencies difficult to access with standard Brillouin and Raman spectroscopies. This technique can be extended to other polarization-sensitive optical systems, such as plasmonic, photonic, or birefringent nanostructures, and finds applications in optomechanical, optoelectronic, and quantum optics devices.

2.
Nature ; 608(7924): 687-691, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002483

RESUMO

Revealing universal behaviours is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces1 and of interfaces in bacterial colonies2, and spin transport in quantum magnets3-6 all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. More specifically, in all these systems, space-time correlations show power-law scalings characterized by universal critical exponents. This universality stems from a common underlying effective dynamics governed by the nonlinear stochastic Kardar-Parisi-Zhang (KPZ) equation7. Recent theoretical works have suggested that this dynamics also emerges in the phase of out-of-equilibrium systems showing macroscopic spontaneous coherence8-17. Here we experimentally demonstrate that the evolution of the phase in a driven-dissipative one-dimensional polariton condensate falls in the KPZ universality class. Our demonstration relies on a direct measurement of KPZ space-time scaling laws18,19, combined with a theoretical analysis that reveals other key signatures of this universality class. Our results highlight fundamental physical differences between out-of-equilibrium condensates and their equilibrium counterparts, and open a paradigm for exploring universal behaviours in driven open quantum systems.

3.
Light Sci Appl ; 9: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864119

RESUMO

We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n = 0 and n = ±1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.

4.
Opt Lett ; 36(17): 3434-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886235

RESUMO

We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects.

5.
Opt Express ; 18(11): 11979-89, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589060

RESUMO

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.


Assuntos
Lasers , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Teoria Quântica , Vibração
6.
Opt Express ; 15(3): 1254-60, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532354

RESUMO

We report on reflection modulation results near 1.55 mum in InP-based two-dimensional photonic crystals. The fabrication technology uses a polymeric bonding technique to integrate the InP thin-slab onto a Silicon wafer. Reflectivity modulation greater than 90% is obtained by pumping at 810 nm with optical excitation densities of 15 muJ/cm(2). The resulting optical broadband modulation is based on the saturation of absorption of InGaAs quantum wells at a photonic mode frequency tunable by lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA