Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 39(1): 405-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35236209

RESUMO

BACKGROUND: Enediynes are anti-cancer agents that are highly cytotoxic due to their propensity for low thermal activation of radical generation. The diradical intermediate produced from Bergman cyclization of the enediyne moiety may induce DNA damage and cell lethality. The cytotoxicity of enediynes and difficulties in controlling their thermal cyclization has limited their clinical use. We recently showed that enediyne toxicity at 37 °C can be mitigated by metallation, but cytotoxic effects of 'metalloenediynes' on cultured tumor cells are potentiated by hyperthermia. Reduction of cytotoxicity at normothermia suggests metalloenediynes will have a large therapeutic margin, with cell death occurring primarily in the heated tumor. Based on our previous in vitro findings, FeSO4-PyED, an Fe co-factor complex of (Z)-N,N'-bis[1-pyridin-2-yl-meth-(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine, was prioritized for further in vitro and in vivo testing in normal human melanocytes and melanoma cells. METHODS: Clonogenic survival, apopotosis and DNA binding assays were used to determine mechanisms of enhancement of FeSO4-PyED cytotoxicity by hyperthermia. A murine human melanoma xenograft model was used to assess in vivo efficacy of FeSO4-PyED at 37 or 42.5 °C. RESULTS: FeSO4-PyED is a DNA-binding compound. Enhancement of FeSO4-PyED cytotoxicity by hyperthermia in melanoma cells was due to Bergman cyclization, diradical formation, and increased apoptosis. Thermal enhancement, however, was not observed in melanocytes. FeSO4-PyED inhibited tumor growth when melanomas were heated during drug treatment, without inducing normal tissue damage. CONCLUSION: By leveraging the unique thermal activation properties of metalloenediynes, we propose that localized moderate hyperthermia can be used to confine the cytotoxicity of these compounds to tumors, while sparing normal tissue.


Assuntos
Antineoplásicos , Hipertermia Induzida , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclização , Enedi-Inos/química , Enedi-Inos/farmacologia , Enedi-Inos/uso terapêutico , Temperatura Alta , Humanos , Camundongos
2.
J Invest Dermatol ; 126(6): 1372-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16470173

RESUMO

A patient with metastatic cutaneous melanoma responsive to immunotherapy experienced several recurrences over a decade of observation. With each recurrence, biopsies were obtained and cell lines generated. A rare mutation of the beta-catenin gene and an unbalanced methylation of the androgen receptor were documented in all cell lines. Karyotyping and comparative genomic hybridization identified consistent genetic traits in spite of divergent phenotypes, suggesting that all the metastases were derived from the same primary tumor, although they were each probably not derived from the most recent previous metastasis in a sequential manner. Thus, metastatic melanoma recurs from a common progenitor cell and phenotypic changes occur around a central core of genetic stability. This observation may bear significance for the development of targeted anticancer therapies.


Assuntos
Melanoma/genética , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas , Neoplasias Cutâneas/genética , beta Catenina/genética , Linhagem Celular Tumoral , Células Clonais , Feminino , Humanos , Cariotipagem , Melanoma/secundário , Mutação , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA