Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 39, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538677

RESUMO

Bedrest shifts fasting and postprandial fuel selection towards carbohydrate use over lipids, potentially affecting astronauts' performance and health. We investigated whether this change occurs in astronauts after at least 3 months onboard the International Space Station (ISS). We further explored the associations with diet, physical activity (PA), and body composition. Before and during spaceflight, respiratory quotient (RQ), carbohydrate, and fat oxidation were measured by indirect calorimetry before and following a standardized meal in 11 males (age = 45.7 [SD 7.7] years, BMI = 24.3 [2.1] kg m-²). Postprandial substrate use was determined by 0-to-260 min postprandial incremental area under the curve (iAUC) of nutrient oxidation and the difference between maximal postprandial and fasting RQ (ΔRQ). Food quotient (FQ) was calculated from diet logs. Fat (FM) and fat-free mass (FFM) were measured by hydrometry and PA by accelerometry and diary logs. Spaceflight increased fasting RQ (P = 0.01) and carbohydrate oxidation (P = 0.04) and decreased fasting lipid oxidation (P < 0.01). An increase in FQ (P < 0.001) indicated dietary modifications onboard the ISS. Spaceflight-induced RQ changes adjusted for ground RQ correlated with inflight FQ (P < 0.01). In postprandial conditions, nutrient oxidation and ΔRQ were unaffected on average. Lipid oxidation changes negatively correlated with FFM changes and inflight aerobic exercise and positively with FM changes. The opposite was observed for carbohydrate oxidation. ΔRQ changes were negatively and positively related to FM and FFM changes, respectively. In conclusion, fasting substrate oxidation shift observed during spaceflight may primarily result from dietary modifications. Between-astronaut variability in postprandial substrate oxidation depends on body composition changes and inflight PA.

2.
Sports Med ; 52(12): 3039-3053, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35829995

RESUMO

OBJECTIVE: Body mass (BM) loss and body composition (BC) changes threaten astronauts' health and mission success. However, the energetic contribution of the exercise countermeasure to these changes has never been investigated during long-term missions. We studied energy balance and BC in astronauts during 6-month missions onboard the International Space Station. METHODS: Before and after at least 3 months in space, BM, BC, total and activity energy expenditure (TEE and AEE) were measured using the doubly labeled water method in 11 astronauts (2011-2017). Physical activity (PA) was assessed by the SensewearPro® activity-device. RESULTS: Three-month spaceflight decreased BM (- 1.20 kg [SE 0.5]; P = 0.04), mainly due to non-significant fat-free mass loss (FFM; - 0.94 kg [0.59]). The decrease in walking time (- 63.2 min/day [11.5]; P < 0.001) from preflight was compensated by increases in non-ambulatory activities (+ 64.8 min/day [18.8]; P < 0.01). Average TEE was unaffected but a large interindividual variability was noted. Astronauts were stratified into those who maintained (stable_TEE; n = 6) and those who decreased (decreased_TEE; n = 5) TEE and AEE compared to preflight data. Although both groups lost similar BM, FFM was maintained and FM reduced in stable_TEE astronauts, while FFM decreased and FM increased in decreased_TEE astronauts (estimated between-group-difference (EGD) in ΔFFMindex [FFMI] 0.87 kg/m2, 95% CI + 0.32 to + 1.41; P = 0.01, ΔFMindex [FMI] - 1.09 kg/m2, 95% CI - 2.06 to - 0.11 kg/m2; P = 0.03). The stable_TEE group had higher baseline FFMI, and greater baseline and inflight vigorous PA than the decreased_TEE group (P < 0.05 for all). ΔFMI and ΔFFMI were respectively negatively and positively associated with both ΔTEE and ΔAEE. CONCLUSION: Both ground fitness and inflight overall PA are associated with spaceflight-induced TEE and BC changes and thus energy requirements. New instruments are needed to measure real-time individual changes in inflight energy balance components.


Assuntos
Astronautas , Composição Corporal , Humanos , Metabolismo Energético , Exercício Físico
3.
Sci Rep ; 12(1): 9928, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705612

RESUMO

Active-desks are emerging strategies aiming at reducing sedentary time while working. A large inter-individual variability in energy expenditure (EE) profile has been identified and has to be explored to better optimize and individualize those strategies. Thus the present study aimed at comparing the metabolic and physical profile of individuals characterized as high spenders (H-Spenders) versus low spenders (L-Spenders) based on EE during a cycle-desk low intensity exercise. 28 healthy women working in administrative positions were enrolled. Anthropometric, body composition and fasting metabolic profile parameters were assessed. EE was determined by indirect calorimetry, at rest and during a 30-min cycle-desk use. Participants were categorized as H-Spenders and L-Spenders using the median of the difference between EE at rest and during the 30-min exercise. H-Spenders had higher mean EE (p < 0.001) and carbohydrate oxidation (p = 0.009) during exercise. H-Spenders displayed higher values for fasting plasma insulin (p = 0.002) and HOMA-IR (p = 0.002) and lower values for HDL-cholesterol (p = 0.014) than L-Spenders. The percentage of body fat mass was significantly higher in H-Spenders (p = 0.034). Individuals expending more energy during a low intensity cycling exercise presented a less healthy metabolic profile compared with L-Spenders. Future studies will have to explore whether the chronic use of cycle-desks during work time can improve energy profile regarding metabolic parameters.


Assuntos
Metabolismo Energético , Exercício Físico , Calorimetria Indireta , Feminino , Humanos , Metaboloma , Comportamento Sedentário
4.
J Physiol ; 600(5): 1037-1051, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33501660

RESUMO

Physical inactivity, i.e. not reaching the recommended level of physical activity (PA), and sedentary behaviours (SB), i.e. sitting time, have been associated with increased risk for common metabolic diseases. Recent epidemiological data suggest that high volumes of SB are detrimental to metabolic health, even in the presence of regular exercise, i.e. moderate/vigorous PA. This suggests that the health effects of SB are independent from those of exercise. However, experimentally testing this hypothesis is complicated because of the difficulty in disassociating SB from PA. Bedrest studies, a traditional space science model, can offer new insights. In some bedrest studies, an exercise training protocol has been used to counteract the harmful effects of inactivity. While bedrest induces an inactive and sedentary state, exercise with bedrest represents a unique model of sedentary yet physically active people. Here, we review bedrest studies with and without exercise training. Although exercise training prevents the loss of muscle mass and function, even large volumes of exercise are not sufficient to fully counteract the negative metabolic adaptations triggered by inactivity. This observation supports the existence of independent adverse health effects of SB, but also the potential benefits of non-exercise activity, i.e. daily living light PA. We gathered available data to examine the complex relationships between exercise, non-exercise activity, SB and health outcomes. Given the large amount of SB in modern societies, the sole promotion of exercise, i.e. moderate/vigorous PA may be insufficient, and promotion of light PA may be a complimentary approach to improve health.


Assuntos
Repouso em Cama , Comportamento Sedentário , Exercício Físico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA