Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
2.
Nutrients ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686798

RESUMO

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Assuntos
Proteínas de Ervilha , Humanos , Masculino , Animais , Ratos , Lactente , Inulina/farmacologia , Músculo Esquelético , Suplementos Nutricionais , Envelhecimento
3.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629822

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Assuntos
Endocanabinoides , Obesidade , Masculino , Animais , Camundongos , Endocanabinoides/metabolismo , Rimonabanto/farmacologia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fenótipo , Sacarose/farmacologia , Camundongos Endogâmicos C57BL
4.
Commun Biol ; 5(1): 1288, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434267

RESUMO

Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.


Assuntos
Sarcopenia , Deficiência de Vitamina D , Humanos , Camundongos , Ratos , Animais , Idoso , Vitamina D/farmacologia , Vitamina D/metabolismo , Sarcopenia/metabolismo , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia , Músculo Esquelético/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo
5.
J Cachexia Sarcopenia Muscle ; 13(1): 662-676, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854262

RESUMO

BACKGROUND: Activation of the endocannabinoid system (ECS) is associated with the development of obesity and insulin resistance, and with perturbed skeletal muscle development. Age-related sarcopenia is a progressive and generalized skeletal muscle disorder involving an accelerated loss of muscle mass and function, with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance. Hence, both obesity and sarcopenia share a common set of pathophysiological alterations leading to skeletal muscle impairment. The aim of this study was to characterize how sarcopenia impacts the ECS and if these modifications were related to the loss of muscle mass and function associated with aging in rats. METHODS: Six-month-old and 24-month-old male rats were used to measure the contractile properties of the plantarflexors (isometric torque-frequency relationship & concentric power-velocity relationship) and to evaluate locomotor activity, motor coordination, and voluntary gait by open field, rotarod, and catwalk tests, respectively. Levels of endocannabinoids (AEA & 2-AG) and endocannabinoid-like molecules (OEA & PEA) were measured by LCF-MS/MS in plasma, skeletal muscle, and adipose tissue, while the expression of genes coding for the ECS were investigated by quantitative reverse transcription PCR (RT-qPCR). RESULTS: Sarcopenia in old rats was exemplified by a 49% decrease in hindlimb muscle mass (P < 0.01), which was associated with severe impairment of isometric torque, power, voluntary locomotor activity, motor coordination, and gait quality. Sarcopenia was associated with (1) increased 2-AG (+32%, P = 0.07) and reduced PEA and OEA levels in the plasma (-25% and -40%, respectively, P < 0.01); (2) an increased content of AEA, PEA, and OEA in subcutaneous adipose tissue (P < 0.01); and (3) a four-fold increase of 2-AG content in the soleus (P < 0.01) and a reduced OEA content in EDL (-80%, P < 0.01). These alterations were associated with profound modifications in the expression of the ECS genes in the adipose tissue and skeletal muscle. CONCLUSIONS: Taken together, these findings demonstrate that circulating and peripheral tissue endocannabinoid tone are altered in sarcopenia. They also demonstrate that OEA plasma levels are associated with skeletal muscle function and loss of locomotor activity in rats, suggesting OEA could be used as a circulating biomarker for sarcopenia.


Assuntos
Resistência à Insulina , Sarcopenia , Animais , Endocanabinoides/metabolismo , Masculino , Obesidade , Ratos , Espectrometria de Massas em Tandem
6.
Nutrients ; 13(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959786

RESUMO

Plant proteins are attracting rising interest due to their pro-health benefits and environmental sustainability. However, little is known about the nutritional value of pea proteins when consumed by older people. Herein, we evaluated the digestibility and nutritional efficiency of pea proteins compared to casein and whey proteins in old rats. Thirty 20-month-old male Wistar rats were assigned to an isoproteic and isocaloric diet containing either casein (CAS), soluble milk protein (WHEY) or Pisane™ pea protein isolate for 16 weeks. The three proteins had a similar effect on nitrogen balance, true digestibility and net protein utilization in old rats, which means that different protein sources did not alter body composition, tissue weight, skeletal muscle protein synthesis or degradation. Muscle mitochondrial activity, inflammation status and insulin resistance were similar between the three groups. In conclusion, old rats used pea protein with the same efficiency as casein or whey proteins, due to its high digestibility and amino acid composition. Using these plant-based proteins could help older people diversify their protein sources and more easily achieve nutritional intake recommendations.


Assuntos
Anabolizantes/farmacologia , Proteínas do Leite/farmacologia , Proteínas Musculares/metabolismo , Proteínas de Ervilha/farmacologia , Aminoácidos/metabolismo , Animais , Caseínas/farmacologia , Digestão/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Valor Nutritivo , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas do Soro do Leite/farmacologia
7.
J Cell Physiol ; 236(4): 2669-2683, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885412

RESUMO

Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto/farmacologia , Animais , Cálcio/metabolismo , Dexametasona/toxicidade , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
8.
Front Physiol ; 12: 749049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111075

RESUMO

The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.

9.
Nutrients ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485842

RESUMO

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Assuntos
Ingestão de Alimentos/fisiologia , Fenômenos Fisiológicos da Nutrição do Idoso/fisiologia , Fabaceae , Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas/metabolismo , Triticum , Fatores Etários , Proteínas Animais da Dieta/administração & dosagem , Proteínas Animais da Dieta/metabolismo , Animais , Caseínas/administração & dosagem , Caseínas/metabolismo , Masculino , Proteínas do Leite/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo , Proteólise , Ratos Wistar
10.
J Cachexia Sarcopenia Muscle ; 10(3): 696-709, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927336

RESUMO

BACKGROUND: Sarcopenia is the loss of muscle mass/function that occurs during the aging process. The links between mechanistic target of rapamycin (mTOR) activity and muscle development are largely documented, but the role of its downstream targets in the development of sarcopenia is poorly understood. Eukaryotic initiation factor 4E-binding proteins (4E-BPs) are targets of mTOR that repress mRNA translation initiation and are involved in the control of several physiological processes. However, their role in skeletal muscle is still poorly understood. The goal of this study was to assess how loss of 4E-BP1 and 4E-BP2 expression impacts skeletal muscle function and homeostasis in aged mice and to characterize the associated metabolic changes by metabolomic and lipidomic profiling. METHODS: Twenty-four-month-old wild-type and whole body 4E-BP1/4E-BP2 double knockout (DKO) mice were used to measure muscle mass and function. Protein homeostasis was measured ex vivo in extensor digitorum longus by incorporation of l-[U-14 C]phenylalanine, and metabolomic and lipidomic profiling of skeletal muscle was performed by Metabolon, Inc. RESULTS: The 4E-BP1/2 DKO mice exhibited an increase in muscle mass that was associated with increased grip strength (P < 0.05). Protein synthesis was higher under both basal (+102%, P < 0.05) and stimulated conditions (+65%, P < 0.05) in DKO skeletal muscle. Metabolomic and complex lipid analysis of skeletal muscle revealed robust differences pertaining to amino acid homeostasis, carbohydrate abundance, and certain aspects of lipid metabolism. In particular, levels of most free amino acids were lower within the 4E-BP1/2 DKO muscle. Interestingly, although glucose levels were unchanged, differences were observed in the isobaric compound maltitol/lactitol (33-fold increase, P < 0.01) and in several additional carbohydrate compounds. 4E-BP1/2 depletion also resulted in accumulation of medium-chain acylcarnitines and a 20% lower C2/C0 acylcarnitine ratio (P < 0.01) indicative of reduced ß-oxidation. CONCLUSIONS: Taken together, these findings demonstrate that deletion of 4E-BPs is associated with perturbed energy metabolism in skeletal muscle and could have beneficial effects on skeletal muscle mass and function in aging mice. They also identify 4E-BPs as potential targets for the treatment of sarcopenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , Sarcopenia/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoácidos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Fatores de Iniciação em Eucariotos/genética , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Proteostase/genética , Sarcopenia/genética , Sarcopenia/terapia , Transdução de Sinais/genética
11.
Mol Nutr Food Res ; 61(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28544394

RESUMO

SCOPE: In recent years, several studies reported the role of eIF4E-binding proteins (4E-BPs) on the development of diet-induced obesity and insulin resistance. Our aim was to investigate the effect of 4E-BP protein deletion on lipid accumulation and metabolism in skeletal muscle in response to a high-fat diet induced obesity in 4E-BP1/2 DKO mice. METHODS AND RESULTS: Diet-induced obesity engendered increased ectopic accumulation of lipotoxic species in skeletal muscle of 4E-BP1 and 4E-BP2 double knockout mice (4E-BP1/2 DKO), namely diacylglycerols and ceramides. Increased lipid accumulation was associated with alterations in the expression of genes involved in fatty acid transport (FATP, CD36), diacylglycerol/triacylglycerol biosynthesis (GPAT1, AGPAT1, DGAT1), and ß-oxidation (CPT1b, MCAD). Diet-induced obesity resulted in increased lean mass and muscle in 4E-BP1/2 DKO mice despite the development of a more severe systemic insulin resistance. Since increased expression of genes of several proteolytic systems (MuRF1, atrogin/MAFbx, and cathepsin-l) in 4EBP1/2 DKO skeletal muscle was reported, the increase of skeletal muscle mass in 4E-BP1/2 DKO mice suggests that ablation of 4E-BPs compensate with activation of muscle anabolism. CONCLUSIONS: These findings indicate that 4E-BP proteins may prevent excess lipid accumulation in skeletal muscle and suggest that 4E-BPs are key regulators of muscle homeostasis regardless of insulin sensitivity.


Assuntos
Proteínas de Transporte/fisiologia , Fatores de Iniciação em Eucariotos/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfoproteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteostase
12.
Diabetologia ; 57(4): 785-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463962

RESUMO

AIMS/HYPOTHESIS: Gene polymorphisms of TCF7L2 are associated with increased risk of type 2 diabetes and transcription factor 7-like 2 (TCF7L2) plays a role in hepatic glucose metabolism. We therefore addressed the impact of TCF7L2 isoforms on hepatocyte nuclear factor 4α (HNF4α) and the regulation of gluconeogenesis genes. METHODS: Liver TCF7L2 transcripts were analysed by quantitative PCR in 33 non-diabetic and 31 type 2 diabetic obese individuals genotyped for TCF7L2 rs7903146. To analyse transcriptional regulation by TCF7L2, small interfering RNA transfection, luciferase reporter and co-immunoprecipitation assays were performed in human hepatoma HepG2 cells. RESULTS: In livers of diabetic compared with normoglycaemic individuals, five C-terminal TCF7L2 transcripts showed increased expression. The type 2 diabetes risk allele of rs7903146 positively correlated with TCF7L2 expression in livers from normoglycaemic individuals only. In HepG2 cells, transcript and TCF7L2 protein levels were increased upon incubation in high glucose and insulin. Of the exon 13 transcripts, six were increased in a glucose dose-responsive manner. TCF7L2 transcriptionally regulated 29 genes related to glucose metabolism, including glucose-6-phosphatase. In cultured HepG2 cells, TCF7L2 did not regulate HNF4Α and FOXO1 transcription, but did affect HNF4α protein expression. The TCF7L2 isoforms T6 and T8 (without exon 13 and with exon 15/14, respectively) specifically interacted with HNF4α. CONCLUSIONS/INTERPRETATION: The different levels of expression of alternative C-terminal TCF7L2 transcripts in HepG2 cells, in livers of normoglycaemic individuals carrying the rs7901346 type 2 diabetes risk allele and in livers of diabetic individuals suggest that these transcripts play a role in the pathophysiology of type 2 diabetes. We also report for the first time a protein interaction in HepG2 cells between HNF4α and the T6 and T8 isoforms of TCF7L2, which suggests a distinct role for these specific alternative transcripts.


Assuntos
Gluconeogênese/fisiologia , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto , Western Blotting , Feminino , Gluconeogênese/genética , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Humanos , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
13.
J Endocrinol ; 216(1): 21-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23092880

RESUMO

Regulated associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (rictor) are two proteins that delineate two different mTOR complexes, mTORC1 and mTORC2 respectively. Recent studies demonstrated the role of rictor in the development and function of ß-cells. mTORC1 has long been known to impact ß-cell function and development. However, most of the studies evaluating its role used either drug treatment (i.e. rapamycin) or modification of expression of proteins known to modulate its activity, and the direct role of raptor in insulin secretion is unclear. In this study, using siRNA, we investigated the role of raptor and rictor in insulin secretion and production in INS-1 cells and the possible cross talk between their respective complexes, mTORC1 and mTORC2. Reduced expression of raptor is associated with increased glucose-stimulated insulin secretion and intracellular insulin content. Downregulation of rictor expression leads to impaired insulin secretion without affecting insulin content and is able to correct the increased insulin secretion mediated by raptor siRNA. Using dominant-negative or constitutively active forms of Akt, we demonstrate that the effect of both raptor and rictor is mediated through alteration of Akt signaling. Our finding shed new light on the mechanism of control of insulin secretion and production by the mTOR, and they provide evidence for antagonistic effect of raptor and rictor on insulin secretion in response to glucose by modulating the activity of Akt, whereas only raptor is able to control insulin biosynthesis.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Hiperglicemia/metabolismo , Secreção de Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas Mutantes/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Interferente Pequeno , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Regulatória Associada a mTOR , Serina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
14.
J Endocrinol ; 214(2): 225-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582094

RESUMO

Zinc ions are essential for the formation of insulin crystals in pancreatic ß cells, thereby contributing to packaging efficiency of stored insulin. Zinc fluxes are regulated through the SLC30A (zinc transporter, ZNT) family. Here, we investigated the effect of metabolic stress associated with the prediabetic state (zinc depletion, glucotoxicity, and lipotoxicity) on ZNT expression and human pancreatic islet function. Both zinc depletion and lipotoxicity (but not glucotoxicity) downregulated ZNT8 (SLC30A8) expression and altered the glucose-stimulated insulin secretion index (GSIS). ZNT8 overexpression in human islets protected them from the decrease in GSIS induced by tetrakis-(2-pyridylmethyl) ethylenediamine and palmitate but not from cell death. In addition, zinc supplementation decreased palmitate-induced human islet cell death without restoring GSIS. Altogether, we showed that ZNT8 expression responds to variation in zinc and lipid levels in human ß cells, with repercussions on insulin secretion. Prospects for increasing ZNT8 expression and/or activity may prove beneficial in type 2 diabetes in humans.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Ilhotas Pancreáticas/metabolismo , Adulto , Proteínas de Transporte de Cátions/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Quelantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Lipídeos/farmacologia , Lipídeos/toxicidade , Ácido Palmítico/farmacologia , Ácido Palmítico/toxicidade , Transfecção , Zinco/farmacologia , Transportador 8 de Zinco
15.
Hum Mol Genet ; 20(10): 1906-15, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21357677

RESUMO

Type 2 diabetes manifests when the ß-cell fails to secrete sufficient amounts of insulin to maintain normoglycemia and undergoes apoptosis. The disease progression results from an interplay of environmental factors and genetic predisposition. Polymorphisms in T-cell factor 7-like 2 (TCF7L2) strongly correlate with type 2 diabetes mellitus (T2DM). While TCF7L2 mRNA is upregulated in islets in diabetes, protein levels are downregulated. The loss of TCF7L2 induces impaired function and apoptosis. By analyzing human isolated islets, we provide three explanations for this opposite regulation and the mechanisms of TCF7L2 on ß-cell function and survival. (i) We found TCF7L2 transcripts in the human ß-cell, which had opposite effects on ß-cell survival, function and Wnt signaling activation. While TCF7L2 clone B1, which lacks exons 13, 14, 15 and 16 induced ß-cell apoptosis, impaired function and inhibited glucagon-like peptide 1 response and downstream targets of Wnt signaling, clones B3 and B7 which both contain exon 13, improved ß-cell survival and function and activated Wnt signaling. (ii) TCF7L2 mRNA is extremely unstable and is rapidly degraded under pro-diabetic conditions and (iii) TCF7L2 depletion in islets induced activation of glycogen synthase kinase 3-ß, but this was independent of endoplasmic reticulum stress. We demonstrated function-specific transcripts of TCF7L2, which possessed distinct physiological and pathophysiological effects on the ß-cell. The presence of deleterious TCF7L2 splice variants may be a mechanism of ß-cell failure in T2DM.


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Linhagem Celular , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Ativação Enzimática , Ordem dos Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Ilhotas Pancreáticas/metabolismo , Dados de Sequência Molecular , Estabilidade de RNA/genética , Alinhamento de Sequência , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
16.
Dev Cell ; 18(5): 763-74, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20493810

RESUMO

Earlier, we reported that S6K1(-/-) mice have reduced body fat mass, have elevated rates of lipolysis, have severely decreased adipocyte size, and are resistant to high fat diet (HFD)-induced obesity. Here we report that adipocytes of S6K1(-/-) mice on a HFD have the capacity to increase in size to a degree comparable to that of wild-type (WT) mice, but not in number, indicating an unexpected lesion in adipogenesis. Tracing this lesion revealed that S6K1 is dispensable for terminal adipocyte differentiation, but is involved in the commitment of embryonic stem cells to early adipocyte progenitors. We further show that absence of S6K1 attenuates the upregulation of transcription factors critical for commitment to adipogenesis. These results led to the conclusion that a lack of S6K1 impairs the generation of de novo adipocytes when mice are challenged with a HFD, consistent with a reduction in early adipocyte progenitors.


Assuntos
Adipócitos/citologia , Diferenciação Celular/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Adipócitos/patologia , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Branco/anatomia & histologia , Animais , Humanos , Hiperplasia/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/prevenção & controle , RNA Mensageiro/genética
17.
Mediators Inflamm ; 2010: 823486, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20339530

RESUMO

It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity.


Assuntos
Tecido Adiposo/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Receptores Toll-Like/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Expressão Gênica , Humanos , Inflamação/genética , Lipopeptídeos/farmacologia , Camundongos , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Receptores Toll-Like/genética
18.
Nat Genet ; 42(2): 142-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081857

RESUMO

Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).


Assuntos
Variação Genética , Glucose/metabolismo , Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Adenilil Ciclases/genética , Índice de Massa Corporal , Dinamarca , Diabetes Mellitus Tipo 2/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Teste de Tolerância a Glucose , Humanos , Incretinas/genética , Masculino , Metanálise como Assunto , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-18329346

RESUMO

A method was developed by using gas chromatography-mass spectrometry in the electron impact ionization mode to quantify citrulline in plasma, red blood cells (RBC) and urine. For all three fluids, citrulline was extracted on ion exchange resins, before derivatization to its propyl-heptaflorobutyryl-ester. Assay precision (coefficient of variation, CV) was <5%, recovery% was >90% and the within- and between-day CV were <10% on 200 microL of plasma and RBC, and 400 microL of urine. The current method allows for the detection of 20 pmol of natural citrulline in aqueous standards, and small volumes (<100 microL) of biological fluids.


Assuntos
Citrulina/sangue , Eritrócitos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Urina/química , Calibragem , Humanos , Reprodutibilidade dos Testes
20.
Am J Physiol Gastrointest Liver Physiol ; 293(5): G1061-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17901164

RESUMO

To determine whether circulating citrulline can be manipulated in vivo in humans, and, if so, whether citrulline availability affects the levels of related amino acids, nitric oxide, urinary citrulline, and urea nitrogen, 10 healthy volunteers were studied on 3 separate days: 1) under baseline conditions; 2) after a 24-h treatment with phenylbutyrate (0.36 g.kg(-1).day(-1)), a glutamine "trapping" agent; and 3) during oral L-citrulline supplementation (0.18 g.kg(-1).day(-1)), in randomized order. Plasma, erythrocyte (RBC), and urinary citrulline concentrations were determined by gas chromatography-mass spectrometry at 3-h intervals between 1100 and 2000 on each study day. Regardless of treatment, RBC citrulline was lower than plasma citrulline, with an RBC-to-plasma ratio of 0.60 +/- 0.04, and urinary citrulline excretion accounted for <1% of the citrulline load filtered by kidney. Phenylbutyrate induced an approximately 7% drop in plasma glutamine (P = 0.013), and 18 +/- 14% (P < 0.0001) and 19 +/- 17% (P < 0.01) declines in plasma and urine citrulline, respectively, with no alteration in RBC citrulline. Oral L-citrulline administration was associated with 1) a rise in plasma, urine, and RBC citrulline (39 +/- 4 vs. 225 +/- 44 micromol/l, 0.9 +/- 0.3 vs. 6.2 +/- 3.8 micromol/mmol creatinine, and 23 +/- 1 vs. 52 +/- 9 micromol/l, respectively); and 2) a doubling in plasma arginine level, without altering blood urea or urinary urea nitrogen excretion, and thus enhanced nitrogen balance. We conclude that 1) depletion of glutamine, the main precursor of citrulline, depletes plasma citrulline; 2) oral citrulline can be used to enhance systemic citrulline and arginine availability, because citrulline is bioavailable and very little citrulline is lost in urine; and 3) further studies are warranted to determine the mechanisms by which citrulline may enhance nitrogen balance in vivo in humans.


Assuntos
Citrulina/metabolismo , Adulto , Aminoácidos/sangue , Disponibilidade Biológica , Citrulina/sangue , Citrulina/urina , Suplementos Nutricionais , Eritrócitos/metabolismo , Humanos , Cinética , Masculino , Fenilbutiratos/farmacologia , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA