Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Rep ; 14(1): 18796, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138319

RESUMO

Marine monitoring efforts are increasingly supported by opportunistic shipboard surveys. However, opportunistic survey methods often require adaptation to suit the vessel and the operations being conducted onboard. Whilst best-practice techniques for surveying marine wildlife on vessels of opportunity are yet to be established, testing and development of alternative methods can provide means for capturing ecological information in otherwise under-surveyed areas. Explicitly, survey methods can be improved while baseline ecological data for new regions are gathered simultaneously. Herein, we tested different survey approaches on a vessel of opportunity in a remote offshore area where little is known about the community composition of top-order marine vertebrate predators: western and south-western Tasmania, Australia. We found that continuous surveys provide greater species counts than structured "snapshot" surveys over the course of a voyage, but that structured surveys can be more practical when managing factors such as observer fatigue. Moreover, we provide a baseline dataset on the marine vertebrate community encountered in western and south-western Tasmania. This information will be critically important for industry and conservation management objectives, and is key to our understanding of the offshore ecosystem around Tasmania.


Assuntos
Aves , Mamíferos , Animais , Aves/fisiologia , Tasmânia , Organismos Aquáticos , Ecossistema , Navios , Monitoramento Ambiental/métodos , Biodiversidade , Conservação dos Recursos Naturais/métodos , Inquéritos e Questionários
2.
Conserv Biol ; : e14345, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145654

RESUMO

Biodiversity is critical for maintaining ecosystem function but is threatened by increasing anthropogenic pressures. In the Southern Ocean, a highly biologically productive region containing many endemic species, proactive management is urgently needed to mitigate increasing pressures from fishing, climate change, and tourism. Site-based conservation is one important tool for managing the negative impacts of human activities on ecosystems. The Key Biodiversity Area (KBA) Standard is a standardized framework used to define sites vital for the persistence of global biodiversity based on criteria and quantitative thresholds. We used tracking data from 14 species of Antarctic and subantarctic seabirds and pinnipeds from the publicly available Retrospective Analysis of Antarctic Tracking Data (RAATD) data set to define KBAs for a diverse suite of marine predators. We used track2kba, an R package that supports identification of KBAs from telemetry data through identification of highly used habitat areas and estimates of local abundance within sites. We compared abundance estimates at each site with thresholds for KBA criteria A1, B1, and D1 (related to globally threatened species, individual geographically restricted species, and demographic aggregations, respectively). We identified 30 potential KBAs for 13 species distributed throughout the Southern Ocean that were vital for each individual species, population, and life-history stage for which they were determined. These areas were identified as highly used by these populations based on observational data and complement the ongoing habitat modeling and bioregionalization work that has been used to prioritize conservation areas in this region. Although further work is needed to identify potential KBAs based on additional current and future data sets, we highlight the benefits of utilizing KBAs as part of a holistic approach to marine conservation, given their significant value as a global conservation tool.


Ampliación de la conservación oceánica por medio del reconocimiento de áreas importantes de biodiversidad en el Océano Antártico a partir de datos de rastreo de varias especies Resumen La biodiversidad es fundamental para mantener la función de los ecosistemas, pero está amenazada por las crecientes presiones antropogénicas. En el Océano Antártico, una región con mucha producción biológica que contiene numerosas especies endémicas, se necesita urgentemente una gestión proactiva para mitigar las crecientes presiones de la pesca, el cambio climático y el turismo. La conservación basada en el sitio es una herramienta importante para gestionar los efectos negativos de las actividades humanas en los ecosistemas. El Estándar de Áreas Clave para la Biodiversidad (ACB) es un marco estandarizado que se utiliza para definir lugares vitales para la persistencia de la biodiversidad mundial con base en criterios y umbrales cuantitativos. Usamos datos del seguimiento de 14 especies de aves marinas y pinnípedos antárticos y sub­antárticos del conjunto de datos públicos Retrospective Analysis of Antarctic Tracking Data (RAATD) para definir las ACB de un conjunto diverso de depredadores marinos. Utilizamos track2kba, un paquete de R que permite la identificación de ACB a partir de datos telemétricos mediante la identificación de áreas de hábitat altamente utilizadas y estimaciones de abundancia local dentro de los sitios. Comparamos las estimaciones de abundancia en cada lugar con los umbrales de los criterios A1, B1 y D1 de las ACB (relacionados con especies amenazadas a nivel mundial, especies individuales restringidas geográficamente y agregaciones demográficas, respectivamente). Identificamos 30 ACB potenciales para 13 especies distribuidas por todo el Océano Antártico que eran vitales para cada especie individual, población y etapa del ciclo biológico para las que se determinaron. Estas áreas fueron identificadas como muy utilizadas por estas poblaciones con base a datos observacionales y complementan el trabajo en curso de modelos del hábitat y biorregionalización que se ha utilizado para priorizar las áreas de conservación en esta región. Aunque es necesario seguir trabajando para identificar posibles ACB basadas en conjuntos de datos adicionales actuales y futuros, destacamos los beneficios de utilizar las ACB como parte de un enfoque holístico de la conservación marina, dado su importante valor como herramienta de conservación global.

3.
Glob Chang Biol ; 30(8): e17452, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162042

RESUMO

Terrestrially breeding marine predators have experienced shifts in species distribution, prey availability, breeding phenology, and population dynamics due to climate change worldwide. These central-place foragers are restricted within proximity of their breeding colonies during the breeding season, making them highly susceptible to any changes in both marine and terrestrial environments. While ecologists have developed risk assessments to evaluate climate risk in various contexts, these often overlook critical breeding biology data. To address this knowledge gap, we developed a trait-based risk assessment framework, focusing on the breeding season and applying it to marine predators breeding in parts of Australian territory and Antarctica. Our objectives were to quantify climate change risk, identify specific threats, and establish an adaptable assessment framework. The assessment considered 25 criteria related to three risk components: vulnerability, exposure, and hazard, while accounting for uncertainty. We employed a scoring system that integrated a systematic literature review and expert elicitation for the hazard criteria. Monte Carlo sensitivity analysis was conducted to identify key factors contributing to overall risk. We identified shy albatross (Thalassarche cauta), southern rockhopper penguins (Eudyptes chrysocome), Australian fur seals (Arctocephalus pusillus doriferus), and Australian sea lions (Neophoca cinerea) with high climate urgency. Species breeding in lower latitudes, as well as certain eared seal, albatross, and penguin species, were particularly at risk. Hazard and exposure explained the most variation in relative risk, outweighing vulnerability. Key climate hazards affecting most species include extreme weather events, changes in habitat suitability, and prey availability. We emphasise the need for further research, focusing on at-risk species, and filling knowledge gaps (less-studied hazards, and/or species) to provide a more accurate and robust climate change risk assessment. Our findings offer valuable insights for conservation efforts, given that monitoring and implementing climate adaptation strategies for land-dependent marine predators is more feasible during their breeding season.


Assuntos
Mudança Climática , Animais , Medição de Risco , Comportamento Predatório , Regiões Antárticas , Spheniscidae/fisiologia , Cadeia Alimentar
4.
Sci Total Environ ; 912: 169084, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056658

RESUMO

Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (

Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Spheniscidae , Ácidos Sulfônicos , Masculino , Feminino , Animais , Urbanização , Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Solo
5.
J Hazard Mater ; 465: 133306, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147759

RESUMO

There remain significant gaps in knowledge about 'sub-lethal' impacts of plastic ingestion, particularly chronic impacts on cells, tissues, or organs. Few studies have applied traditional animal health tools, such as histopathology, to assess physiological damage to wildlife, with fewer still providing information on the dosage or exposure to plastics needed to elicit negative effects. Our study seeks to investigate a common hypothesis in plastic pollution research; that an increasing plastics burden will have an impact on an animal's health, examining two wild species with high levels of environmental exposure to plastic through their diet. Here we assess the histopathology of the muscle, upper digestive tract, liver and kidney of two seabird species that are known to be commonly exposed to plastic, comparing exposed and non-exposed individuals. Fledgling seabirds showed histopathological evidence of cumulative pressures such as starvation, disease, and endoparasite burden. However, we observed no evidence of chronic harm that could be explicitly linked to the plastics. We found one case of haemorrhage, reaffirming that large/sharp plastic foreign bodies may cause acute physical damage. Given the numerous interacting pressures on the health of fledging seabirds, including exposure to plastic, this study highlights the need to scrutinise plastic-animal interactions and research though a One Health lens.


Assuntos
Aves , Poluentes Químicos da Água , Humanos , Animais , Aves/fisiologia , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Ingestão de Alimentos , Plásticos , Fígado/química , Rim/química , Estômago/química , Músculos/química , Resíduos/análise
6.
Ecol Evol ; 13(11): e10601, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928196

RESUMO

Sea lions as a group, display strong site fidelity, and varying degrees of vulnerability to environmental change, disease and fisheries interactions. One of the rarest pinnipeds, the New Zealand sea lion (NZSL, Phocarctos hookeri) has a very restricted breeding range. At Campbell Island/Motu Ihupuku, one of the two primary breeding sites, at-sea foraging behaviour is unknown. We hypothesised that NZSL of various sex and age classes would utilise the water column differently due to differing physiological constraints and therefore have different accessibility to prey resources. We tested whether sea lion diving behaviour varied in relation to (i) age and sex class, (ii) time of day and (iii) water depth. We also hypothesised that the proportion of benthic/pelagic diving, and consequently risk of fisheries interaction, would vary in relation to age and sex. Satellite telemetry tags were deployed on 25 NZSL from a range of age/sex classes recording dive depth, duration and location. Adult females and juveniles used inshore, benthic habitats, while sub-adult males also utilised benthic habitats, they predominantly used pelagic habitat at greater distances from the island. Adult females and juveniles exhibited shorter dives than the same age/sex classes at the Auckland Islands, suggesting a lower dive effort for these age/sex classes at Campbell Island/Motu Ihupuku. Adult females dived more frequently than other age/sex classes, likely operating closer to their physiological limits; however, further data for this age class is needed. Sub-adult male use of pelagic prey may increase their exposure to mid-water trawls; however, further research detailing the degree of spatial overlap with fisheries is required. This study highlights the utility of spatially explicit dive data to predict vertical habitat use, niche separation of various age and sex classes of marine predators and attribute potential fisheries interaction risk in relation to predator habitat use.

7.
Ecol Evol ; 13(10): e10644, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881226

RESUMO

Quantifying the intra- and interindividual variation that exists within a population can provide meaningful insights into a population's vulnerability and response to rapid environmental change. We characterise the foraging behaviour of 308 trips taken by 96 shy albatross (Thalassarche cauta) from Albatross Island across seven consecutive years. At a population level, incubating shy albatross exploited a consistent area within ca. 500 km radius of their breeding colony. During half of the trips, individuals utilised the closest shelf break to the west of the colony, where upwelling events have been reported. The other half of the trips were exclusively within the neritic zone, utilising a variety of locations within the Bass Strait. Furthermore, we found evidence of individual consistency to geographic locations, with subsequent trips by an individual more similar than random trips from all individuals in our data, both within and between years (G-test, p < .05). Between-individual variation in foraging behaviour was not meaningfully explained by age (linear regression, p > .05) or sex (t-test, p > .05) for any metric, suggesting that other intrinsic individual factors are accounting for between-individual variation in foraging trips. A localised foraging distribution is unusual for albatross, which, combined with high variation in space use between individuals demonstrated here, suggests that this species is accessing adequate resources near the colony. Overall, these findings suggest that incubating shy albatross from Albatross Island exhibit tendencies of a generalist population comprised of uniquely specialised individuals. These results suggest that this species is operating below its biological capacity in this fast-warming area and provide a baseline from which to assess future change.

8.
Glob Chang Biol ; 29(3): 648-667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278894

RESUMO

Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.


Assuntos
Spheniscidae , Humanos , Animais , Melhoramento Vegetal , Ecossistema , Previsões , Mudança Climática , Oceanos e Mares
9.
Rev Fish Biol Fish ; 32(1): 65-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280238

RESUMO

Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of global oxygen and carbon cycles, production of food and energy, and sustenance of human wellbeing. However marine ecosystems are swiftly being degraded due to the unsustainable use of marine environments and a rapidly changing climate. The fundamental challenge for the future is therefore to safeguard marine ecosystem biodiversity, function, and adaptive capacity whilst continuing to provide vital resources for the global population. Here, we use foresighting/hindcasting to consider two plausible futures towards 2030: a business-as-usual trajectory (i.e. continuation of current trends), and a more sustainable but technically achievable future in line with the UN Sustainable Development Goals. We identify key drivers that differentiate these alternative futures and use these to develop an action pathway towards the desirable, more sustainable future. Key to achieving the more sustainable future will be establishing integrative (i.e. across jurisdictions and sectors), adaptive management that supports equitable and sustainable stewardship of marine environments. Conserving marine ecosystems will require recalibrating our social, financial, and industrial relationships with the marine environment. While a sustainable future requires long-term planning and commitment beyond 2030, immediate action is needed to avoid tipping points and avert trajectories of ecosystem decline. By acting now to optimise management and protection of marine ecosystems, building upon existing technologies, and conserving the remaining biodiversity, we can create the best opportunity for a sustainable future in 2030 and beyond.

10.
PLoS One ; 17(2): e0262901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139102

RESUMO

Mechanisms promoting coexistence between closely related species are fundamental for maintaining species diversity. Mechanisms of niche differentiation include allochrony which offsets the peak timing of resource utilisation between species. Many studies focus on spatial and temporal niche partitioning during the breeding season, few have investigated the role allochrony plays in influencing interspecific segregation of foraging distribution and ecology between congeneric species during the non-breeding season. We investigated the non-breeding migrations of Snares (Eudyptes robustus) and Fiordland penguins (Eudyptes pachyrhynchus), closely related species breeding between 100-350 km apart whose migration phenology differs by two months. Using light geolocation tracking, we examined the degree of overlap given the observed allochrony and a hypothetical scenario where the species commence migration simultaneously. We found that Fiordland penguins migrated to the Sub-Antarctic Frontal Zone and Polar Frontal Zone in the austral autumn whereas Snares penguins disperse westwards staying north of the Sub-Tropical Front in the austral winter. Our results suggest that allochrony is likely to be at the root of segregation because the relative profitability of the different water masses that the penguins forage in changes seasonally which results in the two species utilising different areas over their core non-breeding periods. Furthermore, allochrony reduces relatively higher levels of spatiotemporal overlap during the departure and arrival periods, when the close proximity of the two species' colonies would cause the birds to congregate in similar areas, resulting in high interspecific competition just before the breeding season. Available evidence from other studies suggests that the shift in phenology between these species has arisen from adaptive radiation and phenological matching to the seasonality of local resource availability during the breeding season and reduced competitive overlap over the non-breeding season is likely to be an incidental outcome.


Assuntos
Spheniscidae , Animais
11.
J Acoust Soc Am ; 150(5): 3353, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34852621

RESUMO

Crabeater seals are circumpolar, ice-dependent seals that produce distinct vocalizations during the breeding season. This study provides the first description of the acoustic repertoire of the crabeater seal in East Antarctica, using data from a stationary hydrophone at 1.8 km depth in the Southern Kerguelen Plateau region in 2014-2015. Two call types were identified in the data set: the low and the high moan calls. Of the 8821 calls detected, 92.5% were classified as low moan calls and 7.5% were high moan calls. The mean duration of the two call types was similar (2.3 and 2.8 s, respectively), however, the high moan calls had a higher frequency range (1020-4525 Hz, n = 11) than the low moan calls (360-2753 Hz, n = 120). The calls were primarily detected in the austral spring. Diel analysis showed that the low moan calls were mostly made at nighttime or proximal to dusk and dawn. The results of this study could aid in the development of automated detectors for crabeater seal vocalizations. This would facilitate comparisons of the distribution and abundance of the species using extant acoustic data and could increase knowledge on the breeding behavior of crabeater seals.


Assuntos
Caniformia , Focas Verdadeiras , Acústica , Animais , Regiões Antárticas , Estações do Ano , Vocalização Animal
12.
Ecol Appl ; 31(5): e02343, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33817895

RESUMO

Quantifying the links between the marine environment, prey occurrence, and predator distribution is the first step towards identifying areas of biological importance for marine spatial planning. Events such as marine heatwaves result in an anomalous change in the physical environment, which can lead to shifts in the structure, biomass, and distribution of lower trophic levels. As central-place foragers, seabirds are vulnerable to changes in their foraging grounds during the breeding season. We first quantified spatiotemporal variability in the occurrence and biomass of prey in response to an abrupt change in oceanography as a result of a marine heatwave event. Secondly, using multivariate techniques and machine learning, we investigated if differences in the foraging technique and prey of seabirds resulted in varying responses to changes in prey occurrence and the environment over a 2.5-yr period. We found that the main variables correlated with seabird distribution were also important in structuring the occurrence and biomass of prey; sea-surface temperature (SST), current speed, mixed-layer depth, and bathymetry. Both zooplankton biomass and the occurrence of fish schools exhibited negative relationships with temperature, and temperature was subsequently an important variable in determining seabird distribution. We were able to establish correlations between the distribution of prey and the spatiotemporal distribution of albatross, little penguins and common-diving petrels. We were unable to find a correlation between the distribution of prey and that of short-tailed shearwaters and fairy prions. For high-use coastal areas, the delineation of important foraging regions is essential to balance human use of an area with the needs of marine predators, particularly seabirds.


Assuntos
Comportamento Predatório , Spheniscidae , Animais , Meio Ambiente , Peixes , Humanos , Estações do Ano
14.
Sci Rep ; 10(1): 8199, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424226

RESUMO

Invasive species present a major conservation threat globally and nowhere are their affects more pronounced than in island ecosystems. Determining how native island populations respond demographically to invasive species can provide information to mitigate the negative effects of invasive species. Using 20 years of mark-recapture data from three sympatric species of albatrosses (black-browed Thalassarche melanophris, grey-headed T. chrysostoma, and light-mantled albatrosses Phoebetria palpebrata), we quantified the influence of invasive European rabbits Oryctolagus cuniculus and extreme weather patterns on breeding probability and success. Temporal variability in rabbit density explained 33-76% of the variability in breeding probability for all three species, with severe decreases in breeding probability observed after a lag period following highest rabbit numbers. For black-browed albatrosses, the combination of extreme rainfall and high rabbit density explained 33% of total trait variability and dramatically reduced breeding success. We showed that invasive rabbits and extreme weather events reduce reproductive output in albatrosses and that eliminating rabbits had a positive effect on albatross reproduction. This illustrates how active animal management at a local breeding site can result in positive population outcomes even for wide ranging animals like albatrosses where influencing vital rates during their at-sea migrations is more challenging.


Assuntos
Aves/genética , Aves/fisiologia , Espécies Introduzidas , Simpatria , Tempo (Meteorologia) , Animais , Clima , Coelhos , Reprodução
15.
Nature ; 580(7801): 87-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238927

RESUMO

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica Populacional
16.
Sci Data ; 7(1): 94, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188863

RESUMO

The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.

17.
BMC Ecol ; 19(1): 36, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510989

RESUMO

BACKGROUND: To understand and predict the distribution of foragers, it is crucial to identify the factors that affect individual movement decisions at different scales. Individuals are expected to adjust their foraging movements to the hierarchical spatial distribution of resources. At a small local scale, spatial segregation in foraging habitat happens among individuals of closely situated colonies. If foraging segregation is due to differences in distribution of resources, we would expect segregated foraging areas to have divergent habitat characteristics. RESULTS: We investigated how environmental characteristics of preferred foraging areas differ between two closely situated Subantarctic fur seal (Arctocephalus tropicalis) colonies and a single Antarctic fur seal (A. gazella) colony that forage in different pelagic areas even though they are located well within each other's foraging range. We further investigated the influence of the seasonal cycle on those environmental factors. This study used tracking data from 121 adult female Subantarctic and Antarctic fur seals, collected during summer and winter (2009-2015), from three different colonies. Boosted Regression Tree species distribution models were used to determine key environmental variables associated with areas of fur seal restricted search behaviour. There were no differences in the relative influence of key environmental variables between colonies and seasons. The variables with the most influence for each colony and season were latitude, longitude and magnitude of sea-currents. The influence of latitude and longitude is a by-product of the species' distinct foraging areas, despite the close proximity (< 25 km) of the colonies. The predicted potential foraging areas for each colony changed from summer to winter, reflecting the seasonal cycle of the Southern Ocean. The model predicted that the potential foraging areas of females from the three colonies should overlap, and the fact they do not in reality indicates that factors other than environmental are influencing the location of each colony's foraging area. CONCLUSIONS: The results indicated that small scale spatial segregation of foraging habitats is not driven by bottom-up processes. It is therefore important to also consider other potential drivers, e.g. competition, information transfer, and memory, to understand animal foraging decisions and movements.


Assuntos
Otárias , Animais , Regiões Antárticas , Ecossistema , Comportamento Alimentar , Feminino , Oceanos e Mares
18.
Sci Rep ; 9(1): 13921, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558737

RESUMO

In species exhibiting differential migration by sex and age, understanding what differences exist, and the adaptive reasons for these differences is critical for determining how demographic groups will respond to environmental variability and anthropogenic perturbations. We used satellite-telemetered movement and diving data to investigate differential migration and its ontogeny in a highly migratory North Pacific Ocean predator, the northern fur seal (Callorhinus ursinus; NFS), with a focus on understudied juvenile (1- to 2-year-old) animals. We instrumented 71 juvenile NFS in two years (2006-07 and 2007-08) at three major North American breeding sites and compared their migratory strategies with pups and adults. Although sexual dimorphism is strong in adult NFS, only weak differences in body mass between sexes were found in juveniles, which had similar body mass to pups (~3-4 months). However, unlike widely-dispersed pups, juvenile male and female NFS dispersed in different directions, and used different habitats characterized by distinct hydrography and prey assemblages during migration, similar to breeding adults. Juvenile diving behavior differed only modestly among habitats and between sexes, consistent with weak differences in body mass. Evidence of habitat sexual segregation by juvenile NFS contradicts previous hypotheses that physiological differences predominantly drive the ontogeny of differential migration.


Assuntos
Migração Animal , Otárias/crescimento & desenvolvimento , Animais , Peso Corporal , Ecossistema , Feminino , Otárias/fisiologia , Masculino , Desenvolvimento Sexual
19.
Sci Rep ; 9(1): 1904, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760725

RESUMO

The emergence of longline fishing around the world has been concomitant with an increase in depredation-interactions by odontocete whales (removal of fish caught on hooks), resulting in substantial socio-economic and ecological impacts. The extent, trends and underlying mechanisms driving these interactions remain poorly known. Using long-term (2003-2017) datasets from seven major Patagonian toothfish (Dissostichus eleginoides) longline fisheries, this study assessed the levels and inter-annual trends of sperm whale (Physeter macrocephalus) and/or killer whale (Orcinus orca) interactions as proportions of fishing time (days) and fishing area (spatial cells). The role of fishing patterns in explaining between-fisheries variations of probabilities of odontocete interactions was investigated. While interaction levels remained globally stable since the early 2000s, they varied greatly between fisheries from 0 to >50% of the fishing days and area. Interaction probabilities were influenced by the seasonal concentration of fishing effort, size of fishing areas, density of vessels, their mobility and the depth at which they operated. The results suggest that between-fisheries variations of interaction probabilities are largely explained by the extent to which vessels provide whales with opportunities for interactions. Determining the natural distribution of whales will, therefore, allow fishers to implement better strategies of spatio-temporal avoidance of depredation.


Assuntos
Pesqueiros , Cachalote/fisiologia , Orca/fisiologia , Animais , Oceano Atlântico , Oceano Índico , Modelos Teóricos , Estações do Ano
20.
PLoS One ; 14(1): e0209983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650104

RESUMO

Antarctica is often associated with images of masculine figures battling against the blizzard. The pervasiveness of heroic white masculine leadership and exploration in Antarctica and, more broadly, in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) research cultures, has meant women have had lesser access to Antarctic research and fieldwork opportunities, with a marked increase since the 1980s. This article presents findings from an exploratory online survey examining how 95 women experienced research and remote Antarctic fieldwork with the Australian Antarctic Program. Although women are entering polar science in greater numbers, a key theme of the qualitative findings of this survey is that gendered barriers to participation in research and fieldwork persist. We discuss five key gendered barriers including: 1) Physical barriers, 2) Caring responsibilities/unpaid work, 3) Cultural sexism/gender bias, 4) Lack of opportunities/recognition, and 5) Unwanted male attention/sexual harassment. We argue that the lack of attention paid to gender and sexuality in polar fieldwork contributes to the invisibility and exclusion of women and other marginalized identities broadly. To conclude, we point to the importance of targeted inclusivity, diversity and equity initiatives through Antarctic research globally and specifically by National Antarctic Programs.


Assuntos
Pesquisa , Sexismo , Mulheres Trabalhadoras , Adulto , Idoso , Regiões Antárticas , Austrália , Engenharia , Feminino , Humanos , Liderança , Masculino , Matemática , Medicina , Pessoa de Meia-Idade , Pesquisadores , Salários e Benefícios , Ciência , Assédio Sexual , Local de Trabalho , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA