Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737835

RESUMO

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Assuntos
Fucosidose , Macroautofagia , Polissacarídeos , Animais , Fucosidose/genética , Fucosidose/metabolismo , Lisossomos/metabolismo , Macroautofagia/fisiologia , Camundongos , Polissacarídeos/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
2.
Sports (Basel) ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35324643

RESUMO

Talent selection programmes choose athletes for talent development pathways. Currently, the set of psychosocial variables that determine talent selection in youth Rugby Union are unknown, with the literature almost exclusively focusing on physiological variables. The purpose of this study was to use a novel machine learning approach to identify the physiological and psychosocial models that predict selection to a regional age-grade rugby union team. Age-grade club rugby players (n = 104; age, 15.47 ± 0.80; U16, n = 62; U18, n = 42) were assessed for physiological and psychosocial factors during regional talent selection days. Predictive models (selected vs. non-selected) were created for forwards, backs, and across all players using Bayesian machine learning. The generated physiological models correctly classified 67.55% of all players, 70.09% of forwards, and 62.50% of backs. Greater hand-grip strength, faster 10 m and 40 m sprint, and power were common features for selection. The generated psychosocial models correctly classified 62.26% of all players, 73.66% of forwards, and 60.42% of backs. Reduced burnout, reduced emotional exhaustion, and lower reduced sense of accomplishment, were common features for selection. Selection appears to be predominantly based on greater strength, speed, and power, as well as lower athlete burnout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA