Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JMIR Hum Factors ; 11: e52592, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635318

RESUMO

BACKGROUND: Clinical decision support (CDS) tools that incorporate machine learning-derived content have the potential to transform clinical care by augmenting clinicians' expertise. To realize this potential, such tools must be designed to fit the dynamic work systems of the clinicians who use them. We propose the use of academic detailing-personal visits to clinicians by an expert in a specific health IT tool-as a method for both ensuring the correct understanding of that tool and its evidence base and identifying factors influencing the tool's implementation. OBJECTIVE: This study aimed to assess academic detailing as a method for simultaneously ensuring the correct understanding of an emergency department-based CDS tool to prevent future falls and identifying factors impacting clinicians' use of the tool through an analysis of the resultant qualitative data. METHODS: Previously, our team designed a CDS tool to identify patients aged 65 years and older who are at the highest risk of future falls and prompt an interruptive alert to clinicians, suggesting the patient be referred to a mobility and falls clinic for an evidence-based preventative intervention. We conducted 10-minute academic detailing interviews (n=16) with resident emergency medicine physicians and advanced practice providers who had encountered our CDS tool in practice. We conducted an inductive, team-based content analysis to identify factors that influenced clinicians' use of the CDS tool. RESULTS: The following categories of factors that impacted clinicians' use of the CDS were identified: (1) aspects of the CDS tool's design (2) clinicians' understanding (or misunderstanding) of the CDS or referral process, (3) the busy nature of the emergency department environment, (4) clinicians' perceptions of the patient and their associated fall risk, and (5) the opacity of the referral process. Additionally, clinician education was done to address any misconceptions about the CDS tool or referral process, for example, demonstrating how simple it is to place a referral via the CDS and clarifying which clinic the referral goes to. CONCLUSIONS: Our study demonstrates the use of academic detailing for supporting the implementation of health information technologies, allowing us to identify factors that impacted clinicians' use of the CDS while concurrently educating clinicians to ensure the correct understanding of the CDS tool and intervention. Thus, academic detailing can inform both real-time adjustments of a tool's implementation, for example, refinement of the language used to introduce the tool, and larger scale redesign of the CDS tool to better fit the dynamic work environment of clinicians.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Serviço Hospitalar de Emergência , Humanos , Instituições de Assistência Ambulatorial , Confiabilidade dos Dados
2.
JMIR Med Inform ; 11: e44977, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079367

RESUMO

BACKGROUND: The clinical narrative in electronic health records (EHRs) carries valuable information for predictive analytics; however, its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-scale clinical natural language processing (NLP) pipelines have focused on data warehouse applications for retrospective research efforts. There remains a paucity of evidence for implementing NLP pipelines at the bedside for health care delivery. OBJECTIVE: We aimed to detail a hospital-wide, operational pipeline to implement a real-time NLP-driven CDS tool and describe a protocol for an implementation framework with a user-centered design of the CDS tool. METHODS: The pipeline integrated a previously trained open-source convolutional neural network model for screening opioid misuse that leveraged EHR notes mapped to standardized medical vocabularies in the Unified Medical Language System. A sample of 100 adult encounters were reviewed by a physician informaticist for silent testing of the deep learning algorithm before deployment. An end user interview survey was developed to examine the user acceptability of a best practice alert (BPA) to provide the screening results with recommendations. The planned implementation also included a human-centered design with user feedback on the BPA, an implementation framework with cost-effectiveness, and a noninferiority patient outcome analysis plan. RESULTS: The pipeline was a reproducible workflow with a shared pseudocode for a cloud service to ingest, process, and store clinical notes as Health Level 7 messages from a major EHR vendor in an elastic cloud computing environment. Feature engineering of the notes used an open-source NLP engine, and the features were fed into the deep learning algorithm, with the results returned as a BPA in the EHR. On-site silent testing of the deep learning algorithm demonstrated a sensitivity of 93% (95% CI 66%-99%) and specificity of 92% (95% CI 84%-96%), similar to published validation studies. Before deployment, approvals were received across hospital committees for inpatient operations. Five interviews were conducted; they informed the development of an educational flyer and further modified the BPA to exclude certain patients and allow the refusal of recommendations. The longest delay in pipeline development was because of cybersecurity approvals, especially because of the exchange of protected health information between the Microsoft (Microsoft Corp) and Epic (Epic Systems Corp) cloud vendors. In silent testing, the resultant pipeline provided a BPA to the bedside within minutes of a provider entering a note in the EHR. CONCLUSIONS: The components of the real-time NLP pipeline were detailed with open-source tools and pseudocode for other health systems to benchmark. The deployment of medical artificial intelligence systems in routine clinical care presents an important yet unfulfilled opportunity, and our protocol aimed to close the gap in the implementation of artificial intelligence-driven CDS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05745480; https://www.clinicaltrials.gov/ct2/show/NCT05745480.

3.
Healthc (Amst) ; 10(1): 100598, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34923354

RESUMO

Of the 3 million older adults seeking fall-related emergency care each year, nearly one-third visited the Emergency Department (ED) in the previous 6 months. ED providers have a great opportunity to refer patients for fall prevention services at these initial visits, but lack feasible tools for identifying those at highest-risk. Existing fall screening tools have been poorly adopted due to ED staff/provider burden and lack of workflow integration. To address this, we developed an automated clinical decision support (CDS) system for identifying and referring older adult ED patients at risk of future falls. We engaged an interdisciplinary design team (ED providers, health services researchers, information technology/predictive analytics professionals, and outpatient Falls Clinic staff) to collaboratively develop a system that successfully met user requirements and integrated seamlessly into existing ED workflows. Our rapid-cycle development and evaluation process employed a novel combination of human-centered design, implementation science, and patient experience strategies, facilitating simultaneous design of the CDS tool and intervention implementation strategies. This included defining system requirements, systematically identifying and resolving usability problems, assessing barriers and facilitators to implementation (e.g., data accessibility, lack of time, high patient volumes, appointment availability) from multiple vantage points, and refining protocols for communicating with referred patients at discharge. ED physician, nurse, and patient stakeholders were also engaged through online surveys and user testing. Successful CDS design and implementation required integration of multiple new technologies and processes into existing workflows, necessitating interdisciplinary collaboration from the onset. By using this iterative approach, we were able to design and implement an intervention meeting all project goals. Processes used in this Clinical-IT-Research partnership can be applied to other use cases involving automated risk-stratification, CDS development, and EHR-facilitated care coordination.


Assuntos
Acidentes por Quedas , Sistemas de Apoio a Decisões Clínicas , Acidentes por Quedas/prevenção & controle , Idoso , Serviço Hospitalar de Emergência , Humanos , Encaminhamento e Consulta , Fluxo de Trabalho
4.
Arch Sex Behav ; 38(5): 702-12, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18046637

RESUMO

Much research has shown that entering the public sphere is emotionally taxing yet key to male-to-female transsexuals' status passage. Yet, little is known about how transsexuals actively manage their emotions during this important transitional phase. Taking a dramaturgical approach to emotions, we explored how some male-to-female transsexuals managed their emotions in ways that helped generate self-confidence and commitment to their paths. Interviewees engaged in three primary forms of emotion work: (1) preparatory emotion work mitigated anxiety and bolstered confidence, which motivated them to enter public arenas as women; (2) in situ emotion work transformed negative emotions as they arose when performing womanhood in public; and (3) retrospective emotion work reinterpreted past public performances to neutralize negative and accentuate positive emotions.


Assuntos
Emoções , Comportamento Social , Transexualidade/psicologia , Adulto , Feminino , Terapia de Reposição Hormonal , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Autoimagem , Transexualidade/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA