Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Phys Lett ; 98(9): 91104, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21448254

RESUMO

A type of integrated hollow core waveguide with low intrinsic photoluminescence fabricated with Ta(2)O(5) and SiO(2) films is demonstrated. Hollow core waveguides made with a combination of plasma-enhanced chemical vapor deposition SiO(2) and sputtered Ta(2)O(5) provide a nearly optimal structure for optofluidic biofluorescence measurements with low optical loss, high fabrication yield, and low background photoluminescence. Compared to earlier structures made using Si(3)N(4), the photoluminescence background of Ta(2)O(5) based hollow core waveguides is decreased by a factor of 10 and the signal-to-noise ratio for fluorescent nanobead detection is improved by a factor of 12.

2.
Lab Chip ; 11(8): 1502-6, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21340094

RESUMO

Fluorescence cross-correlation spectroscopy (FCCS) is a highly sensitive fluorescence technique with distinct advantages in many bioanalytical applications involving interaction and binding of multiple components. Due to the use of multiple beams, bulk optical FCCS setups require delicate and complex alignment procedures. We demonstrate the first implementation of dual-color FCCS on a planar, integrated optofluidic chip based on liquid-core waveguides that can guide liquid and light simultaneously. In this configuration, the excitation beams are delivered in predefined locations and automatically aligned within the excitation waveguides. We implement two canonical applications of FCCS in the optofluidic lab-on-chip environment: particle colocalization and binding/dissociation dynamics. Colocalization is demonstrated in the detection and discrimination of single-color and double-color fluorescently labeled nanobeads. FCCS in combination with fluorescence resonance energy transfer (FRET) is used to detect the denaturation process of double-stranded DNA at nanomolar concentration.


Assuntos
Dispositivos Lab-On-A-Chip , Espectrometria de Fluorescência/instrumentação , Cor , DNA/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Nanoestruturas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA