Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0157622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876575

RESUMO

The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.


Assuntos
Sistemas de Secreção Tipo VI , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chromobacterium/genética , Chromobacterium/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Camundongos , Percepção de Quorum , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
2.
J Fish Biol ; 98(3): 874-877, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33112421

RESUMO

A total of 122 Patinga specimens were collected from fish farms (P1, P2 and P3), and only those from fish farm P1 were shown to be infected with Echinorhynchus gomesi. In addition, fish in this study were shown to have diets that consisted of 21 different food items, and Notodiaptomus sp. (Copepoda: Calanoida) was identified as a potential intermediate host for E. gomesi.


Assuntos
Acantocéfalos/fisiologia , Caraciformes/parasitologia , Doenças dos Peixes/parasitologia , Cadeia Alimentar , Helmintíase Animal/parasitologia , Animais , Copépodes/parasitologia , Doenças dos Peixes/transmissão , Pesqueiros , Helmintíase Animal/transmissão
3.
Environ Microbiol ; 22(6): 2432-2442, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329144

RESUMO

Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana , Chromobacterium/metabolismo , Indóis/metabolismo , Percepção de Quorum , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA