Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Heliyon ; 3(1): e00225, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28194450

RESUMO

The adjuvant potential of two mesoporous silica nanoparticles (MSNs), SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP). The recombinant antigen (HSP70212-600), previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

2.
Vet Microbiol ; 190: 50-57, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27283856

RESUMO

Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.


Assuntos
Imunidade Celular/imunologia , Proteínas de Membrana/imunologia , Mycoplasma hyopneumoniae/imunologia , Mycoplasma/imunologia , Domínios Proteicos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Camundongos , Proteínas Recombinantes/imunologia , Especificidade da Espécie
3.
Braz. arch. biol. technol ; Braz. arch. biol. technol;57(3): 357-360, May-June 2014. tab
Artigo em Inglês | LILACS | ID: lil-709387

RESUMO

The production of recombinant LipL32 protein using Escherichia coli has been used extensively for the development of vaccines and diagnostic tests for leptospirosis. However, E. coli has demonstrated limitations, including low yield and lack of post-translational modifications. In this study, rLipL32 was produced in eukaryotic expression system (Pichia pastoris) and evaluated the antigen by enzyme-linked immunosorbent assay (ELISA). The yield obtained from the culture supernatant reached 270 mg/L and ELISA showed an accuracy of 95.34%. In summary, the production of rLipL32 using P. pastoris did not impair the antigenic characteristics of this antigen and ensured its use for detecting the leptospiral antibodies in swine sera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA