Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Biol ; 127(12): 1512-1523, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097325

RESUMO

The survival of living organisms depends on iron, one of the most abundant metals in the Earth's crust. Nevertheless, this micronutrient is poorly available in our aerobic atmosphere as well as inside the mammalian host. This problem is circumvented by the expression of high affinity iron uptake machineries, including the production of siderophores, in pathogenic fungi. Here we demonstrated that F. pedrosoi, the causative agent of the neglected tropical disease chromoblastomycosis, presents gene clusters for siderophore production. In addition, ten putative siderophore transporters were identified. Those genes are upregulated under iron starvation, a condition that induces the secretion of hydroxamates, as revealed by chrome azurol S assays. RP-HPLC and mass spectrometry analysis allowed the identification of ferricrocin as an intra- and extracellular siderophore. F. pedrosoi can grow in different iron sources, including the bacterial ferrioxamine B and the host proteins ferritin, hemoglobin and holotransferrin. Of note, addition of hemoglobin, lactoferrin and holotransferrin to the growth medium of macrophages infected with F. pedrosoi enhanced significantly fungal survival. The ability to produce siderophores in iron limited conditions added to the versatility to utilize different sources of iron are strategies that certainly may contribute to fungal survival inside the host.


Assuntos
Ferro , Sideróforos , Animais , Ferro/metabolismo , Sideróforos/metabolismo , Hemoglobinas , Mamíferos/metabolismo
2.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504717

RESUMO

Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.

3.
Mol Imaging Biol ; 21(6): 1097-1106, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30838551

RESUMO

PURPOSE: Aspergillus fumigatus produces the siderophore triacetylfusarinine C (TAFC) for iron acquisition which is essential for its virulence. Therefore, TAFC is a specific marker for invasive aspergillosis. We have shown previously that positron emission tomography (PET) imaging with [68Ga]TAFC exhibited excellent targeting properties in an A. fumigatus rat infection model. In this study, we aimed to prepare TAFC analogs modifying fusarinine C (FSC) by acylation with different carbon chain lengths as well as with charged substituents and investigated the influence of introduced substituents on preservation of TAFC characteristics in vitro and in vivo. PROCEDURES: Fifteen TAFC derivatives were prepared and labeled with gallium-68. In vitro uptake assays were carried out in A. fumigatus under iron-replete as well as iron-depleted conditions and distribution coefficient was determined. Based on these assays, three compounds, [68Ga]tripropanoyl(FSC) ([68Ga]TPFC), [68Ga]diacetylbutanoyl(FSC) ([68Ga]DABuFC), and [68Ga]trisuccinyl(FSC) ([68Ga]FSC(suc)3), with high, medium, and low in vitro uptake in fungal cultures, were selected for further evaluation. Stability and protein binding were evaluated and in vivo imaging performed in the A. fumigatus rat infection model. RESULTS: In vitro uptake studies using A. fumigatus revealed specific uptake of mono- and trisubstituted TAFC derivatives at RT. Lipophilicities as expressed by logD were 0.34 to - 3.80. The selected compounds displayed low protein binding and were stable in PBS and serum. Biodistribution and image contrast in PET/X-ray computed tomography of [68Ga]TPFC and [68Ga]DABuFC were comparable to [68Ga]TAFC, whereas no uptake in the infected region was observed with [68Ga]FSC(suc)3. CONCLUSIONS: Our studies show the possibility to modify TAFC without losing its properties and specific recognition by A. fumigatus. This opens also new ways for multimodality imaging or theranostics of fungal infection by introducing functionalities such as fluorescent dyes or antifungal moieties.


Assuntos
Compostos Férricos/química , Ácidos Hidroxâmicos/química , Imagem Molecular , Micoses/diagnóstico por imagem , Sideróforos/química , Animais , Aspergillus fumigatus/fisiologia , Proteínas Sanguíneas/metabolismo , Radioisótopos de Gálio/química , Humanos , Camundongos Endogâmicos BALB C , Mutação/genética , Micoses/microbiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Aspergilose Pulmonar/diagnóstico por imagem , Aspergilose Pulmonar/microbiologia , Ratos , Sideróforos/síntese química , Distribuição Tecidual
4.
Metallomics ; 10(11): 1687-1700, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30395137

RESUMO

Microorganisms have to adapt their metabolism to the requirements of their ecological niche to avoid iron shortage as well as iron toxicity. Therefore, mechanisms have been evolved to tightly regulate iron uptake, consumption, and detoxification, which depend on sensing the cellular iron status. In the facultative anaerobic yeast Saccharomyces cerevisiae, iron-sensing depends on mitochondrial (ISC) but not cytosolic iron-sulfur cluster assembly (CIA), while in mammals further processing of an ISC product via CIA is required for sensing of the cellular iron state. To address the question of how the obligatory aerobic mold Aspergillus fumigatus senses the cellular iron state, mutant strains allowing the downregulation of ISC and CIA were generated. These studies revealed that: (i) Nfs1 (Afu3g14240) and Nbp35 (Afu2g15960), which are involved in ISC and CIA, respectively, are essential for growth; (ii) a decrease in ISC (Nfs1 depletion) but not CIA (Nbp35 depletion) results in a transcriptional iron starvation response, (iii) a decrease in, ISC as well as CIA, increases the chelatable iron pool, accompanied by increased iron toxicity and increased susceptibility to oxidative stress and phleomycin. In agreement with ISC being essential for iron-sensing, a decrease in mitochondrial iron import by deletion of the mitochondrial iron importer MrsA resulted in an iron starvation response. Taken together, these data underline that iron-sensing in A. fumigatus depends on ISC but not CIA. Moreover, depletion of the glutathione pool via generating a mutant lacking γ-glutamylcysteine synthase, GshA (Afu3g13900), caused an iron starvation response, underlining a crucial role of glutathione in iron-sensing in A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Técnicas Biossensoriais , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo
5.
Contrast Media Mol Imaging ; 2018: 3171794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849512

RESUMO

Cholecystokinin-2 receptors (CCK2R) are overexpressed in a variety of malignant diseases and therefore have gained certain attention for peptide receptor radionuclide imaging. Among extensive approaches to improve pharmacokinetics and metabolic stability of minigastrin (MG) based radioligands, the concept of multivalency for enhanced tumour targeting has not been investigated extensively. We therefore utilized fusarinine C (FSC) as chelating scaffold for novel mono-, di-, and trimeric bioconjugates for targeting CCK2R expression. FSC-based imaging probes were radiolabelled with positron emitting radionuclides (gallium-68 and zirconium-89) and characterized in vitro (log⁡D, IC50, and cell uptake) and in vivo (metabolic stability in BALB/c mice, biodistribution profile, and microPET/CT imaging in A431-CCK2R/A431-mock tumour xenografted BALB/c nude mice). Improved targeting did not fully correlate with the grade of multimerization. The divalent probe showed higher receptor affinity and increased CCK2R mediated cell uptake while the trimer remained comparable to the monomer. In vivo biodistribution studies 1 h after administration of the 68Ga-labelled radioligands confirmed this trend, but imaging at late time point (24 h) with 89Zr-labelled counterparts showed a clearly enhanced imaging contrast of the trimeric probe compared to the mono- and dimer. Furthermore, in vivo stability studies showed a higher metabolic stability for multimeric probes compared to the monomeric bioconjugate. In summary, we could show that FSC can be utilized as suitable scaffold for novel mono- and multivalent imaging probes for CCK2R-related malignancies with partly improved targeting properties for multivalent conjugates. The increased tumour accumulation of the trimer 24 h postinjection (p.i.) can be explained by slower clearance and increased metabolic stability of multimeric conjugates.


Assuntos
Compostos Férricos/química , Gastrinas/química , Ácidos Hidroxâmicos/química , Radioisótopos , Cintilografia/métodos , Compostos Radiofarmacêuticos/química , Receptor de Colecistocinina B/análise , Animais , Linhagem Celular Tumoral , Quelantes/química , Estabilidade de Medicamentos , Radioisótopos de Gálio , Xenoenxertos , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Zircônio
6.
Sci Rep ; 6: 35306, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748436

RESUMO

Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and ß-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.


Assuntos
Aspergillus fumigatus/metabolismo , Ergotioneína/biossíntese , Proteínas Fúngicas/metabolismo , Antioxidantes/química , Aspergillus fumigatus/genética , Carbono-Oxigênio Liases/metabolismo , Compostos Férricos/química , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Gliotoxina/química , Glutationa/metabolismo , Histidina/química , Peróxido de Hidrogênio/química , Ácidos Hidroxâmicos/química , Liases/metabolismo , Metais Pesados/química , Oxirredução , Estresse Oxidativo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/química , Vitamina K 3/química
7.
Sci Rep ; 5: 8220, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25665925

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus is increasingly found as a coinfecting agent along with Pseudomonas aeruginosa in cystic fibrosis patients. Amongst the numerous molecules secreted by P. aeruginosa during its growth, phenazines constitute a major class. P. aeruginosa usually secreted four phenazines, pyocyanin (PYO), phenazine-1-carboxamide (PCN), 1-hydroxyphenazine (1-HP) and phenazine-1-carboxylic acid (PCA). These phenazines inhibited the growth of A. fumigatus but the underlying mechanisms and the impact of these four phenazines on A. fumigatus biology were not known. In the present study, we analyzed the functions of the four phenazines and their mode of action on A. fumigatus. All four phenazines showed A. fumigatus growth inhibitory effects by inducing production of reactive oxygen species (ROS), specifically O2(·-), and reactive nitrogen species (RNS), ONOO(-). A. fumigatus Sod2p was the major factor involved in resistance against the ROS and RNS induced by phenazines. Sub-inhibitory concentrations of PYO, PCA and PCN promote A. fumigatus growth by an independent iron-uptake acquisition. Of the four phenazines 1-HP had a redox-independent function; being able to chelate metal ions 1-HP induced A. fumigatus iron starvation. Our data show the fine-interactions existing between A. fumigatus and P. aeruginosa, which can lead to stimulatory or antagonistic effects.


Assuntos
Aspergillus fumigatus/metabolismo , Ferro/metabolismo , Microbiota/fisiologia , Fenazinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Superóxidos/metabolismo
8.
PLoS Pathog ; 10(11): e1004487, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375670

RESUMO

The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Proteínas de Ligação a Elemento Regulador de Esterol , Transcriptoma , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética
9.
Front Microbiol ; 5: 530, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386169

RESUMO

Iron plays a critical role in survival and virulence of the opportunistic pathogen Aspergillus fumigatus. Two transcription factors, the GATA-factor SreA and the bZip-factor HapX oppositely monitor iron homeostasis with HapX activating iron acquisition pathways (e.g., siderophores) and shutting down iron consumptive pathways (and SreA) during iron starvation conditions whereas SreA negatively regulates HapX and corresponding pathways during iron sufficiency. Recently the non-ribosomal peptide, hexadehydroastechrome (HAS; a tryptophan-derived iron (III)-complex), has been found important in A. fumigatus virulence. We found that HAS overproduction caused an iron starvation phenotype, from alteration of siderophore pools to regulation of iron homeostasis gene expression including sreA. Moreover, we uncovered an iron dependent secondary metabolism network where both SreA and HapX oppositely regulate multiple other secondary metabolites including HAS. This circuitry links iron-acquisition and consumption pathways with secondary metabolism-thus placing HAS as part of a metabolic feedback circuitry designed to balance iron pools in the fungus and presenting iron availability as one environmental trigger of secondary metabolism.

10.
EMBO J ; 33(19): 2261-76, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25092765

RESUMO

Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.


Assuntos
Adaptação Fisiológica , Aspergilose/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/genética , Aspergilose/virologia , Western Blotting , Imunoprecipitação da Cromatina , Proteínas Fúngicas/genética , Homeostase , Imunoprecipitação , Inanição , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Vacúolos/metabolismo , Virulência
11.
PLoS One ; 9(8): e105805, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157575

RESUMO

Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity.


Assuntos
Ácidos Hidroxâmicos/metabolismo , Ferro/metabolismo , Paracoccidioides/metabolismo , Animais , Linhagem Celular , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Sideróforos/biossíntese , Sideróforos/genética , Sideróforos/metabolismo , Transcrição Gênica , Ativação Transcricional
12.
Brief Funct Genomics ; 13(6): 482-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25062661

RESUMO

Iron is an essential metal for many organisms, but the biologically relevant form of iron is scarce because of rapid oxidation resulting in low solubility. Simultaneously, excessive accumulation of iron is toxic. Consequently, iron uptake is a highly controlled process. In most fungal species, siderophores play a central role in iron handling. Siderophores are small iron-specific chelators that can be secreted to scavenge environmental iron or bind intracellular iron with high affinity. A second high-affinity iron uptake mechanism is reductive iron assimilation (RIA). As shown in Aspergillus fumigatus and Aspergillus nidulans, synthesis of siderophores in Aspergilli is predominantly under control of the transcription factors SreA and HapX, which are connected by a negative transcriptional feedback loop. Abolishing this fine-tuned regulation corroborates iron homeostasis, including heme biosynthesis, which could be biotechnologically of interest, e.g. the heterologous production of heme-dependent peroxidases. Aspergillus niger genome inspection identified orthologues of several genes relevant for RIA and siderophore metabolism, as well as sreA and hapX. Interestingly, genes related to synthesis of the common fungal extracellular siderophore triacetylfusarinine C were absent. Reverse-phase high-performance liquid chromatography (HPLC) confirmed the absence of triacetylfusarinine C, and demonstrated that the major secreted siderophores of A. niger are coprogen B and ferrichrome, which is also the dominant intracellular siderophore. In A. niger wild type grown under iron-replete conditions, the expression of genes involved in coprogen biosynthesis and RIA was low in the exponential growth phase but significantly induced during ascospore germination. Deletion of sreA in A. niger resulted in elevated iron uptake and increased cellular ferrichrome accumulation. Increased sensitivity toward phleomycin and high iron concentration reflected the toxic effects of excessive iron uptake. Moreover, SreA-deficiency resulted in increased accumulation of heme intermediates, but no significant increase in heme content. Together with the upregulation of several heme biosynthesis genes, these results reveal a complex heme regulatory mechanism.


Assuntos
Aspergillus niger/metabolismo , Compostos Férricos/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/metabolismo , Genômica/métodos , Heme/metabolismo , Ácidos Hidroxâmicos/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Sideróforos/metabolismo , Aspergillus niger/genética , Mineração de Dados , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Perfilação da Expressão Gênica , Heme/química , Ionóforos/metabolismo , Proteínas Repressoras/genética
13.
Mol Microbiol ; 88(5): 862-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23617799

RESUMO

Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (anhydromevalonyl-CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH-targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen-type siderophore-producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Peroxissomos/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Sequência Conservada , Redes e Vias Metabólicas/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Homologia de Sequência de Aminoácidos
14.
Metallomics ; 4(12): 1262-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23151814

RESUMO

Iron is an essential element for all eukaryotes but its excess has deleterious effects. Aspergillus fumigatus produces extracellular siderophores for iron uptake and the intracellular siderophore ferricrocin (FC) for distribution and storage of iron. Iron excess has previously been shown to increase the content of ferric FC and the expression of the putative vacuolar iron importer CccA (AFUA_4G12530), indicating a role of both the vacuole and FC in iron detoxification. In this study, we show that CccA-deficiency decreases iron resistance in particular in combination with derepressed iron uptake, while overproduction of CccA increases iron resistance. Green fluorescence protein-tagging confirmed localization of CccA in the vacuolar membrane. In contrast to CccA-deficiency, inactivation of FC biosynthesis did not affect iron resistance, which indicates that vacuolar rather than FC-mediated iron storage is the major iron detoxifying mechanism. After uptake, extracellular siderophore backbones are hydrolyzed and recycled. Lack of FC, CccA, and in particular lack of both increased the cellular content of iron chelated by siderophore breakdown products. These data indicate that the transfer of iron from extracellular siderophores to the metabolism, FC or the vacuole precedes recycling of siderophore breakdown products. Furthermore, this study indicates that CccA does not play an exclusive role in vacuolar iron storage for nutritional reuse.


Assuntos
Aspergillus fumigatus/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/genética , Transporte Biológico Ativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Filogenia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA