Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharmaceutics ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675209

RESUMO

Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough of our era. However, the functional and specific delivery of siRNAs into tissues of interest and into the cytosol of target cells remains highly challenging, mainly due to the lack of efficient and selective delivery systems. Among the variety of carriers for siRNA delivery, peptides have become essential candidates because of their high selectivity, stability, and conjugation versatility. Here, we describe the development of molecules encompassing siRNAs against SOD1, conjugated to peptides that target the low-density lipoprotein receptor (LDLR), and their biological evaluation both in vitro and in vivo.

2.
J Med Chem ; 66(13): 8844-8857, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37339060

RESUMO

Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.


Assuntos
Compostos Macrocíclicos , Peptídeos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Sistemas de Liberação de Medicamentos , Peptídeos/química , Receptores de LDL/metabolismo
3.
Commun Biol ; 4(1): 987, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413441

RESUMO

Despite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR). We demonstrate by using near-infrared fluorescence imaging the potential of this conjugate to specifically detect and discriminate primary PDAC from healthy organs including pancreas and from benign mass-forming chronic pancreatitis, as well as detect metastatic pancreatic cancer cells in healthy liver. This work paves the way towards clinical applications in which safe LDLR-targeting peptide conjugate promotes tumor-specific delivery of imaging and/or therapeutic agents, thereby leading to substantial improvements of the PDAC patient's outcome.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Receptores de LDL/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Receptores de LDL/metabolismo
4.
Glia ; 69(11): 2618-2643, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310753

RESUMO

Neurotensin (NT) acts as a primary neurotransmitter and neuromodulator in the CNS and has been involved in a number of CNS pathologies including epilepsy. NT mediates its central and peripheral effects by interacting with the NTSR1, NTSR2, and Sort1/NTSR3 receptor subtypes. To date, little is known about the precise expression of the NT receptors in brain neural cells and their regulation in pathology. In the present work, we studied the cellular distribution of the NTSR2 protein in the rat hippocampus and questioned whether its expression was modulated in conditions of neuroinflammation using a model of temporal lobe epilepsy induced by pilocarpine. This model is characterized by a rapid and intense inflammatory reaction with reactive gliosis in the hippocampus. We show that NTSR2 protein is expressed in hippocampal astrocytes and its expression increases together with astrocyte reactivity following induction of status epilepticus. NTSR2 immunoreactivity is also increased in astrocytes proximal to blood vessels and their end-feet, and in endothelial cells. Proinflammatory factors such as IL1ß and LPS induced NTSR2 mRNA and protein in cultured astroglial cells. Antagonizing NTSR2 with SR142948A decreased NTSR2 expression as well as astroglial reactivity. Together, our results suggest that NTSR2 is implicated in astroglial and gliovascular inflammation and that targeting the NTSR2 receptor may open new avenues in the regulation of neuroinflammation in CNS diseases.


Assuntos
Astrócitos , Pilocarpina , Animais , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Doenças Neuroinflamatórias , Pilocarpina/metabolismo , Pilocarpina/toxicidade , Ratos , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Convulsões/metabolismo
5.
FEBS Open Bio ; 8(12): 2011-2021, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30524951

RESUMO

BMP-1/tolloid-like proteinases belong to the astacin family of human metalloproteinases, together with meprins and ovastacin. They represent promising targets to treat or prevent a wide range of diseases such as fibrotic disorders or cancer. However, the study of their pathophysiological roles is still impaired by the lack of well-characterized inhibitors and the questions that remain regarding their selectivity and in vivo efficiency. As a first step towards the identification of suitable tools to be used in functional studies, we have undertaken a systematic comparison of seven molecules known to affect the proteolytic activity of human astacins including three hydroxamates (FG-2575, UK383,367, S33A), the protein sizzled, a new phosphinic inhibitor (RXP-1001) and broad-spectrum protease inhibitors (GM6001, actinonin). Their efficacy in vitro, their cellular toxicity and efficacy in cell cultures were thoroughly characterized. We found that these molecules display very different potency and selectivity profiles, with hydroxamate FG-2575 and the protein sizzled being very powerful and selective inhibitors of BMP-1, whereas phosphinic peptide RXP-1001 behaves as a broad-spectrum inhibitor of astacins. Their use should therefore be carefully considered in agreement with the aim of the study to avoid result misinterpretation.

6.
PLoS One ; 13(2): e0191052, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29485998

RESUMO

Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.


Assuntos
Peptídeos/metabolismo , Receptores de LDL/metabolismo , Sequência de Aminoácidos , Animais , Sistemas de Liberação de Medicamentos , Endocitose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Engenharia de Proteínas , Ratos , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
FASEB J ; 31(5): 1807-1827, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28108572

RESUMO

The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.


Assuntos
Anticorpos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Endocitose/fisiologia , Receptores de LDL/metabolismo , Animais , Transporte Biológico/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Ratos , Receptores de LDL/deficiência
8.
Mol Pharm ; 13(12): 4094-4105, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27656777

RESUMO

Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC]cDPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC]c) which specifically binds hLDLR with a KD of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC]c), which showed the highest KD value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 106 s-1.M-1 range, and off-rates varying from the low 10-2 s-1 to the 10-1 s-1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"]c), showing a KD of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3H-VH4127 in wild-type or ldlr -/- mice confirmed their active LDLR targeting in vivo. Overall, this study extends our previous work toward a diversified portfolio of LDLR-targeted peptide vectors with validated LDLR-targeting potential in vivo.


Assuntos
Vetores Genéticos/normas , Fragmentos de Peptídeos/farmacologia , Receptores de LDL/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Sistemas de Liberação de Medicamentos , Endocitose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/farmacocinética , Receptores de LDL/fisiologia , Relação Estrutura-Atividade , Distribuição Tecidual
9.
Biopolymers ; 104(5): 533-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25846422

RESUMO

The internalization of cell-penetrating peptides (CPPs) into liposomes (large unilamellar vesicles, LUVs) was studied with a rapid and robust procedure based on the quenching of a small fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole (NBD). Quenching can be achieved by reduction with dithionite or by pH jump. LUVs with different compositions of phospholipids (PLs) were used to screen the efficacy of different CPPs. In order to "validate" the composition of the membrane models, a control cationic peptide, which does not enter eukaryotic cells, was included in the study. It was found that pure DOPG or DOPG within ternary mixtures with cholesterol are the most appropriate models for studying CPP translocation. An anionic lipid, such as DOPG, is required for the adsorption of the basic peptides on the surface of LUVs. In addition, it acts as transfer agent through the lipid bilayer. A fluid phase and/or the presence of phase defects also appear mandatory for the internalization to occur. The neutralization of charges within an inverted micelle demonstrated in the case of DOPG and also proposed for a ternary mixture of PLs might not be the only mechanism for the CPP translocation. Finally, it is shown that oleic acid facilitates the entry inside LUVs in gel phase of a series of cationic peptides including CPPs and also the negative control peptide PKCi.


Assuntos
Bioensaio/métodos , Peptídeos Penetradores de Células/metabolismo , Lipossomas Unilamelares/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/química , Corantes Fluorescentes/química , Fatores de Tempo , Lipossomas Unilamelares/química
10.
Biochim Biophys Acta ; 1838(8): 2087-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796502

RESUMO

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neoplasias/patologia , Peptídeos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Varredura Diferencial de Calorimetria , Peptídeos Penetradores de Células , Dicroísmo Circular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lipossomos , Lipídeos de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas
11.
J Biol Chem ; 287(40): 33581-93, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22825851

RESUMO

BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Glicoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metaloproteinases da Matriz/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo
12.
Biochim Biophys Acta ; 1818(3): 448-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22182801

RESUMO

Glycosylated cell penetrating peptides (CPPs) have been conjugated to a peptide cargo and the efficiency of cargo delivery into wild type Chinese hamster ovary (CHO) and proteoglycan deficient CHO cells has been quantified by MALDI-TOF mass spectrometry and compared to tryptophan- or alanine containing CPPs. In parallel, the behavior of these CPPs in contact with model membranes has been characterized by different biophysical techniques: Differential Scanning and Isothermal Titration Calorimetries, Imaging Ellipsometry and Attenuated Total Reflectance IR spectroscopy. With these CPPs we have demonstrated that tryptophan residues play a key role in the insertion of a CPP and its conjugate into the membrane: galactosyl residues hampered the internalization when introduced in the middle of the amphipathic secondary structure of a CPP but not when added to the N-terminus, as long as the tryptophan residues were still present in the sequence. The insertion of these CPPs into membrane models was enthalpy driven and was related to the number of tryptophans in the sequence of these secondary amphipathic CPPs. Additionally, we have observed a certain propensity of the investigated CPP analogs to aggregate in contact with the lipid surface.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Galactose/farmacocinética , Modelos Biológicos , Triptofano/farmacocinética , Animais , Células CHO , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Cricetinae , Cricetulus , Galactose/química , Galactose/farmacologia , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química , Triptofano/farmacologia
13.
J Chem Biol ; 3(2): 51-65, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19899012

RESUMO

UNLABELLED: Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however, their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating peptide (R6/W3): Ac-RRWWRRWRR-NH(2). One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12154-009-0031-9) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA