Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256069

RESUMO

Obesity is the excessive accumulation of body fat resulting from impairment in energy balance mechanisms. In this study, we aimed to investigate the mechanism whereby GABA (γ-aminobutyric acid) prevents high-fat diet-induced obesity, and whether it induces lipolysis and browning in white adipose tissue (WAT), using high-fat diet (HFD)-fed obese mice and 3T3-L1 adipocytes. We demonstrated that GABA substantially inhibits the body mass gain of mice by suppressing adipogenesis and lipogenesis. Consistent with this result, histological analysis of WAT demonstrated that GABA decreases adipocyte size. Moreover, we show that GABA administration decreases fasting blood glucose and improves serum lipid profiles and hepatic lipogenesis in HFD-fed obese mice. Furthermore, Western blot and immunofluorescence analyses showed that GABA activates protein kinase A (PKA) signaling pathways that increase lipolysis and promote uncoupling protein 1 (UCP1)-mediated WAT browning. Overall, these results suggest that GABA exerts an anti-obesity effect via the regulation of lipid metabolism.


Assuntos
Adipócitos , Dieta Hiperlipídica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Ácido gama-Aminobutírico/farmacologia
2.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759480

RESUMO

As populations around the world age, interest in healthy aging is growing. One of the first physical changes that occurs with aging is the loss of muscle mass and strength, termed sarcopenia. Sarcopenia limits the activity of older people, reduces their quality of life, and increases the likelihood of their developing disease. In the present study, we aimed to evaluate the effects of the ingestion of acid-hydrolyzed silk peptide (SP) on the muscle mass and strength of mice of >22 months of age with naturally occurring sarcopenia, and to identify the mechanisms involved. The daily administration of SP for 8 weeks increased the activation of the Akt/mTOR/FoxO3a signaling pathways and increased the muscle mass and strength of the old mice. In addition, SP inhibited oxidative stress and inflammation in muscle, which are direct causes of sarcopenia. Therefore, SP represents a promising potential treatment for sarcopenia that may improve the healthy lifespan and quality of life of older people.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sarcopenia , Humanos , Animais , Camundongos , Idoso , Sarcopenia/tratamento farmacológico , Qualidade de Vida , Serina-Treonina Quinases TOR , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Seda , Transdução de Sinais
3.
Cells ; 12(17)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37681878

RESUMO

Sarcopenic obesity is characterized by concurrent obesity and muscle wasting (sarcopenia) and is common in the elderly. Sarcopenic obesity has steadily increased as the aging population has grown and is an increasing public health burden. Both obesity and sarcopenia independently increase health risks of the elderly, but sarcopenic obesity has a greater effect on metabolic disease than either obesity or sarcopenia alone. The metabolic mechanisms of obesity and sarcopenia are strongly interconnected, and obesity and sarcopenia form a vicious cycle, with each pathology exacerbating the other. The pathogenesis of sarcopenic obesity is more complex than either disease alone and remains incompletely understood, underscoring the significant unmet clinical need for effective sarcopenic obesity treatments. We aimed to determine the efficacy and underlying regulatory mechanisms of Gamma-aminobutyric acid (GABA) in sarcopenic obesity in high-fat-diet-fed obese aged mice and alterations in related mechanisms to determine the potential of GABA as a therapeutic modality for sarcopenic obesity. In this study, we used young (3 months) and aged (20 months) mice to evaluate age-related sarcopenic obesity. The daily administration of GABA for 8 weeks resulted in decreased fat mass and increased muscle mass and strength in aged mice. GABA also enhanced energy expenditure in both adipose tissue and skeletal muscle. In addition, GABA promoted muscle synthesis and decreased muscle degradation by activating the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. These findings demonstrate that GABA has potential uses in preventing age-related sarcopenic obesity and related metabolic diseases.


Assuntos
Sarcopenia , Animais , Camundongos , Sarcopenia/etiologia , Sarcopenia/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético , Camundongos Obesos , Obesidade/complicações , Ácido gama-Aminobutírico
4.
Cells ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37566094

RESUMO

Faced with a globally aging society, the maintenance of health and quality of life in older people is very important. The age-related loss of muscle mass and strength, known as sarcopenia, severely reduces quality of life and increases the risks of various diseases. In this study, we investigated the inhibitory effect of hesperidin (HES) on inflammaging, with the intention of evaluating its potential use as a treatment for sarcopenia. We studied 22-26-month-old mice, corresponding to humans aged ≥70 years, with aging-related sarcopenia, and young mice aged 3-6 months. The daily administration of HES for 8 weeks resulted in greater muscle mass and strength and increased the fiber size of the old mice. HES also restored the immune homeostasis that had been disrupted by aging, such as the imbalance in M1/M2 macrophage ratio. In addition, we found that HES ameliorated the sarcopenia by regulating AKT/mammalian target of rapamycin/forkhead box 3a signaling through an increase in insulin-like growth factor (IGF)-1 expression in the old mice. Therefore, HES represents a promising candidate inhibitor of sarcopenia in older people, and its effects are achieved through the maintenance of immune homeostasis.

5.
J Med Food ; 26(4): 232-243, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36897318

RESUMO

Ecklonia stolonifera, belonging to the Laminariaceae family, is an edible widely distributed perennial brown marine alga that is rich in polyphenols. Dieckol, a bioactive component of the E. stolonifera extract (ESE), is a major phlorotannin compound found only in brown algae. This study aimed to evaluate the ability of ESE to inhibit lipid accumulation caused by oxidative stress in 3T3-L1 adipocytes and high-fat diet-fed obese ICR mice. We report that ESE-treated obese ICR mice, which were fed a high-fat diet, showed reduced whole-body and adipose tissue weights with improved plasma lipid profiles. In vitro and in vivo studies have indicated that ESE inhibited the expression of adipogenesis-related genes associated with fat accumulation through AMP-activated protein kinase activity and increased the expression of lipolysis-related genes. In addition, ESE reduced the expression of enzymes involved in reactive oxygen species (ROS) production and increased the expression of antioxidant enzymes, thereby reducing ROS levels. These findings suggest that ESE possesses strong antioxidant properties and inhibits oxidative stress-induced lipid accumulation by reducing ROS production during adipocyte generation.


Assuntos
Fármacos Antiobesidade , Phaeophyceae , Animais , Camundongos , Camundongos Endogâmicos ICR , Dieta Hiperlipídica/efeitos adversos , Fármacos Antiobesidade/farmacologia , Antioxidantes/farmacologia , Células 3T3-L1 , Espécies Reativas de Oxigênio , Obesidade/etiologia , Adipogenia , Lipídeos , Camundongos Endogâmicos C57BL
6.
Cells ; 11(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291111

RESUMO

Since skeletal muscle atrophy resulting from various causes accelerates the progression of several diseases, its prevention should help maintain health and quality of life. A range of natural materials have been investigated for their potential preventive effects against muscle atrophy. Here, ethanol extracts of Angelica gigas and Artemisia dracunculus were concentrated and dried, and mixed at a ratio of 7:3 to create the mixture CHDT. We then evaluated the potential for CHDT to prevent muscle atrophy and explored the mechanisms involved. CHDT was orally administered to C57BL/6 mice daily for 30 days, and dexamethasone (Dex) was intraperitoneally injected daily to induce muscle atrophy from 14 days after the start of oral administration. We found that CHDT prevented the Dex-induced reductions in muscle strength, mass, and fiber size, likely by upregulating the Akt/mTOR signaling pathway. In addition, CHDT reduced the Dex-induced increase in the serum concentrations of pro-inflammatory cytokines, which directly induce the degradation of muscle proteins. These findings suggest that CHDT could serve as a natural food supplement for the prevention of muscle atrophy.


Assuntos
Angelica , Artemisia , Atrofia Muscular , Extratos Vegetais , Animais , Camundongos , Citocinas/sangue , Dexametasona , Etanol , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Quimioterapia Combinada
7.
Mar Drugs ; 20(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286432

RESUMO

Ecklonia stolonifera Okamura (ES) is mainly distributed in the coastal areas of the middle Pacific, around Korea and Japan, and has a long-standing edible value. It is rich in various compounds, such as polysaccharides, fatty acids, alginic acid, fucoxanthin, and phlorotannins, among which the polyphenol compound phlorotannins are the main active ingredients. Studies have shown that the extracts and active components of ES exhibit anti-cancer, antioxidant, anti-obesity, anti-diabetic, antibacterial, cardioprotective, immunomodulatory, and other pharmacological properties in vivo and in vitro. Although ES contains a variety of bioactive compounds, it is not widely known and has not been extensively studied. Based on its potential health benefits, it is expected to play an important role in improving the nutritional value of food both economically and medically. Therefore, ES needs to be better understood and developed so that it can be utilized in the development and application of marine medicines, functional foods, bioactive substances, and in many other fields. This review provides a comprehensive overview of the bioactivities and bioactive compounds of ES to promote in-depth research and a reference for the comprehensive utilization of ES in the future.


Assuntos
Antioxidantes , Phaeophyceae , Antioxidantes/farmacologia , Polifenóis/farmacologia , Ácido Algínico , Ácidos Graxos , Antibacterianos
8.
J Ginseng Res ; 46(6): 809-818, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36312735

RESUMO

Background: The non-saponin fraction (NSF) of Korean Red Ginseng is a powder in which saponin is eliminated from red ginseng concentrate by fractionation. In this study, we examined the effect of NSF on age-associated sarcopenia in old mice. Methods: NSF (50 or 200 mg/kg/day) was administered orally daily to young (3-6-month-old) and old (20-24-month-old) C57BL/6 J mice for 6 weeks. Body weight and grip strength were assessed once a week during the oral administration period. The gastrocnemius and quadriceps muscle were excised, and the muscle fiber size was compared through hematoxylin and eosin staining. In addition, the effect of NSF on sarcopenia and inflammation/oxidative stress-related factors in hindlimb muscles was investigated by western blotting. Flow cytometry analysis was conducted to investigate the effect of NSF on immune homeostasis. Blood samples were collected by cardiac puncture, and the serum levels of insulin-like growth factor 1, pro-inflammatory cytokines, and glutathione were evaluated. Results: NSF significantly alleviated muscle strength, mass, and also fiber size in old mice. Age-associated impairment of immune homeostasis was recovered by NSF through retaining CD11b+F4/80+ macrophages and regulating inflammatory biomarkers. NSF also decreased the age-induced expression of oxidative stress factors. Taken together, NSF showed the effect of improving sarcopenia by inhibiting low-grade chronic inflammatory/oxidative stress factors. Conclusion: NSF exhibited anti-sarcopenia effects by regulating chronic inflammation and oxidative stress in old mice. Thus, we suggest that NSF is a promising restorative agent that can be used to improve sarcopenia in the elderly as well as maintain immune homeostasis.

9.
Food Funct ; 13(22): 11840-11852, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36314528

RESUMO

Obesity is characterized by excessive fat accumulation owing to an imbalance between energy intake and expenditure. The suppression of lipid accumulation and the promotion of white adipose tissue (WAT) browning, which increases energy expenditure, may protect against obesity. Here, we demonstrate that okra complex (OKC) significantly reduces the body and WAT mass of mice by inhibiting adipogenesis and lipogenesis. We also show that OKC administration reduces fasting blood glucose and serum cholesterol and triglyceride (TG) concentrations and ameliorates liver steatosis in HFD-fed obese mice. In addition, OKC activates the protein kinase A (PKA) signaling pathway, which increases lipolysis; and induces the uncoupling protein 1 (UCP1)-mediated "browning" of WAT. These findings demonstrate that OKC has potentially beneficial effects on lipid metabolism and upregulates thermogenesis, which implies that it may be useful for the therapy and/or prevention of obesity and related metabolic diseases.


Assuntos
Abelmoschus , Doenças Metabólicas , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Obesidade/prevenção & controle , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Camundongos Obesos , Triglicerídeos/metabolismo , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL
10.
J Ginseng Res ; 46(3): 454-463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600770

RESUMO

Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.

11.
Stem Cells Int ; 2021: 5548630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899919

RESUMO

Alzheimer's disease (AD) animal studies have reported that mesenchymal stem cells (MSCs) have therapeutic effects; however, clinical trial results are controversial. Neprilysin (NEP) is the main cleavage enzyme of ß-amyloid (Aß), which plays a major role in the pathology and etiology of AD. We evaluated whether transplantation of MSCs with NEP gene modification enhances the therapeutic effects in an AD animal model and then investigated these pathomechanisms. We manufactured NEP gene-enhanced human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and intravenously transplanted them in Aß 1-42-injected AD animal models. We compared the differences in behavioral tests and immunohistochemical assays between four groups: normal, Aß 1-42 injection, naïve hUC-MSCs, and NEP-enhanced hUC-MSCs. Both naïve and NEP-enhanced hUC-MSC groups showed significant improvements in memory compared to the Aß 1-42 injection group. There was no significant difference between naïve and NEP-enhanced hUC-MSC groups. There was a significant decrease in Congo red, BACE-1, GFAP, and Iba-1 and a significant increase in BDNF, NeuN, and NEP in both hUC-MSC groups compared to the Aß 1-42 injection group. Among them, BDNF, NeuN, GFAP, Iba-1, and NEP showed more significant changes in the NEP-enhanced hUC-MSC group than in the naïve group. After stem cell injection, stem cells were not found. Extracellular vesicles (EVs) were equally observed in the hippocampus in the naïve and NEP-enhanced hUC-MSC groups. However, the EVs of NEP-enhanced hUC-MSCs contained higher amounts of NEP as compared to the EVs of naïve hUC-MSCs. Thus, hUC-MSCs affect AD animal models through stem cell-released EVs. Although there was no significant difference in cognitive function between the hUC-MSC groups, NEP-enhanced hUC-MSCs had superior neurogenesis and anti-inflammation properties compared to naïve hUC-MSCs due to increased NEP in the hippocampus by enriched NEP-possessing EVs. NEP gene-modified MSCs that release an increased amount of NEP within EVs may be a promising therapeutic option in AD treatment.

12.
J Ginseng Res ; 45(6): 744-753, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764729

RESUMO

BACKGROUND: Gintonin-enriched fraction (GEF) is a new non-saponin component glycolipoprotein isolated from ginseng root. This study examined the effect of GEF on age-related sarcopenia in old C57BL/6J mice. METHODS: Young (3-6 months) and old (20-24 months) C57BL/6J mice received oral GEF (50 mg/kg/day or 150 mg/kg/day) daily for 5 weeks. During the oral administration period, body weight and grip strength were measured weekly. After sacrifice, muscles from the hindlimb were excised and used for hematoxylin and eosin staining and western blotting to determine the effects of GEF on sarcopenia. The thymus was photographed to compare size, and flow cytometry was performed to examine the effect of GEF on immune homeostasis in the thymus and spleen. Blood samples were collected, and the concentrations of pro-inflammatory cytokines and IGF-1 were measured. RESULTS: GEF caused a significant increase in muscle strength, mass, and fiber size in old mice. GEF restored age-related disruption of immune homeostasis by maintaining T cell compartments and regulating inflammatory biomarkers. Thus, GEF reduced common low-grade chronic inflammatory parameters, which are the main cause of muscle loss. CONCLUSION: GEF maintained immune homeostasis and inhibited markers of chronic inflammation, resulting in anti-sarcopenia effects in aged C57BL/6J mice. Thus, GEF is a potential therapeutic agent that slows sarcopenia in the elderly.

13.
Front Nutr ; 7: 583186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330583

RESUMO

Anti-aging research suggests that immunosenescent cells can play deleterious roles in the immune system. Here, young (2 months old) and old (14 months old) C57BL/6 mice received a daily oral dose (100 or 750 mg/kg/day) of acid-hydrolyzed silk peptide (SP) for a period of 5 weeks. Mouse spleen, lymph node, and serum were analyzed to determine the immune homeostasis of SP by flow cytometry, Western blotting, ELISA, and qRT-PCR. The results suggest that SP ameliorates age-related dysfunction of T and B cells. Amelioration of B cell dysfunction improved the immunoglobulin response in aged mice. Taken together, the results suggest that SP restores immune homeostasis with respect to immunosenescent cells.

14.
Biomolecules ; 10(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679738

RESUMO

Obesity is a major health concern and is becoming an increasingly serious societal problem worldwide. The browning of white adipocytes has received considerable attention because of its potential protective effect against obesity-related metabolic disease. The gintonin-enriched fraction (GEF) is a non-saponin, glycolipoprotein component of ginseng that is known to have neuroprotective and anti-inflammatory effects. However, the anti-obesity and browning effects of GEF have not been explored to date. Therefore, we aimed to determine whether GEF has a preventive effect against obesity. We differentiated 3T3-L1 cells and mouse primary subcutaneous adipocytes for 8 days in the presence or absence of GEF, and then measured the expression of intermediates in signaling pathways that regulate triglyceride (TG) synthesis and browning by Western blotting and immunofluorescence analysis. We found that GEF reduced lipid accumulation by reducing the expression of pro-adipogenic and lipogenic factors, and increased lipolysis and thermogenesis, which may be mediated by an increase in the phosphorylation of protein kinase A. These findings suggest that GEF may induce fat metabolism and energy expenditure in white adipocytes and therefore may represent a potential treatment for obesity.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Metabolismo Energético , Camundongos , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
15.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580518

RESUMO

Ambient particulate matter (PM) is a critical environment pollutant that promotes the onset and aggravation of respiratory diseases such as asthma through airway inflammation and hypersecretion of mucus. In this study, we aimed to identify the effects of fucoidans isolated from sporophylls of Undaria pinnatifida on asthma symptoms such as the inflammatory response and mucus secretion using a mouse model. Balb/c mice, intraperitoneally sensitized with ovalbumin (OVA, 10 µg) dissolved in 200 µL saline and 2 mg Al(OH)3, were exposed to PM (5 mg/m3) for 7 consecutive days. In parallel, along with PM exposure, we orally administrated fucoidans (100, 400 mg/Kg) or prednisone (5 mg/Kg), an anti-inflammatory drug. We found that oral administration of fucoidans significantly attenuated PM-induced lipid peroxidation and infiltration of inflammatory cells like F4/80+ macrophages, Gr-1+ granulocytes, and CD4+ T lymphocytes. Fucoidans also attenuated the level of PM-exacerbated IL-4, a primitive cytokine released in Th2 mediated eosinophilic asthma. This further suppressed mast cell activation, degranulation and IgE synthesis of PM exposed mice. Interestingly, fucoidans attenuated PM-exacerbated mucus hypersecretion and goblet cell hyperplasia. Therefore, our results suggest that fucoidans are effective at alleviating PM-exacerbated allergic asthma symptoms by attenuating the airway inflammatory response and mucus hypersecretion.


Assuntos
Asma/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia , Undaria/química , Animais , Anti-Inflamatórios/farmacologia , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/efeitos adversos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
16.
Biomolecules ; 10(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429220

RESUMO

Acid-hydrolyzed silk peptide (SP) is a valuable material that has been used traditionally to treat various diseases, however, the mechanism by which it affects inflammatory responses is unknown. To examine the effects of SP on inflammatory responses, we used macrophages as a vehicle for examining signaling via toll-like receptor 4 (TLR4), which plays an important role in innate immune responses to pathogenic infections and pathogen-derived molecules such as lipopolysaccharide (LPS). We then confirmed the anti-inflammatory effects of SP by examining lymph node, spleen, and serum samples from C57BL/6 mice injected with LPS. We also used LPS-induced bone marrow-derived macrophages and RAW264.7 cells (a murine macrophage cell line) to identify the mechanism by which SP modulates immune responses via the TLR4 signaling pathway. In addition, we showed that SP prevents LPS-induced production of nitric oxide and reactive oxygen species. In summary, SP inhibits LPS-induced inflammatory responses by modulating the TLR4 signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Fibroínas/química , Fragmentos de Peptídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/química , Células Cultivadas , Citocinas/metabolismo , Feminino , Lipopolissacarídeos/toxicidade , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/metabolismo
17.
Foods ; 9(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331214

RESUMO

Female infertility and subfertility have been increasing in prevalence worldwide. One contributing factor is ovarian function, which is highly age-dependent. Korean red ginseng is widely used as an herbal medicine and has many beneficial properties. We aimed to determine the effect of the Korean red ginseng saponin fraction (KRGSF) on ovarian function in female C57BL/6 mice. Ovaries were isolated from 6- and 12-month-old female mice and treated with KRGSF, and then RNA was extracted and microarray analysis was performed. The expression of key genes was subsequently verified using quantitative RT-PCR. Aging markedly increased the expression of genes encoding oxidative stress factors and NLRP3 inflammasome components, but the expression of these genes was significantly reduced by KRGSF treatment. Thus, the reduction in ovarian health with age is associated with greater oxidative stress response and inflammation, but KRGSF treatment may limit these age-related changes.

18.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245100

RESUMO

Obesity results from an imbalance between energy intake and energy expenditure, in which excess fat is stored as triglycerides (TGs) in white adipocytes. Recent studies have explored the anti-obesity effects of certain edible phytochemicals, which suppress TG accumulation and stimulate a brown adipocyte-like phenotype in white adipocytes. Gomisin N (GN) is an important bioactive component of Schisandra chinensis, a woody plant endemic to Asia. GN has antioxidant, anti-inflammatory and hepatoprotective effects in vivo and in vitro. However, the anti-obesity effects of GN in lipid metabolism and adipocyte browning have not yet been investigated. In the present study, we aimed to determine whether GN suppresses lipid accumulation and regulates energy metabolism, potentially via AMP-activated protein kinase (AMPK), in 3T3-L1 adipocytes. Our findings demonstrate that GN inhibited adipogenesis and lipogenesis in adipocyte differentiation. Also, GN not only increased the expression of thermogenic factors, including uncoupling protein 1 (UCP1), but also enhanced fatty acid oxidation (FAO) in 3T3-L1 cells. Therefore, GN may have a therapeutic benefit as a promising natural agent to combat obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Lignanas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Schisandra/química , Células 3T3-L1 , Acetil-CoA Carboxilase/metabolismo , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Lignanas/química , Camundongos , Oxirredução/efeitos dos fármacos , Fenótipo , Compostos Policíclicos/química , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
19.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252474

RESUMO

Obesity develops due to an energy imbalance and manifests as the storage of excess triglyceride (TG) in white adipose tissue (WAT). Recent studies have determined that edible natural materials can reduce lipid accumulation and promote browning in WAT. We aimed to determine whether Ecklonia stolonifera extract (ESE) would increase the energy expenditure in high-fat diet (HFD)-induced obese mice and 3T3-L1 cells by upregulating lipolysis and browning. ESE is an edible brown marine alga that belongs to the family Laminariaceae and contains dieckol, a phlorotannin. We report that ESE inhibits body mass gain by regulating the expression of proteins involved in adipogenesis and lipogenesis. In addition, ESE activates protein kinase A (PKA) and increases the expression of lipolytic enzymes including adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and monoacylglycerol lipase (MGL) and also thermogenic genes, such as carnitine palmitoyltransferase 1 (CPT1), PR domain-containing 16 (PRDM16), and uncoupling protein 1 (UCP1). These findings indicate that ESE may represent a promising natural means of preventing obesity and obesity-related metabolic diseases.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Fármacos Antiobesidade/uso terapêutico , Lipólise/efeitos dos fármacos , Phaeophyceae/química , Extratos Vegetais/química , Células 3T3-L1 , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Obesos
20.
J Ginseng Res ; 44(2): 267-273, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32148408

RESUMO

BACKGROUND: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. METHODS: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. RESULTS: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. CONCLUSIONS: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA