RESUMO
Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.
RESUMO
Peptides and molecular residues sourced from the fragmentation of the extracellular matrix (ECM) can exacerbate a plethora of cellular functions. We selected a natural ECM-derived complex peptide mixture to functionalize sodium alginate. Three alginate derivatives (sodium alginate conjugated with ECM) SALE-1, SALE-2, and SALE-3 were synthesized using the lowest (10 % w/w), moderate (50 % w/w), and highest (100 % w/w) concentrations of ECM. Thereafter, they were used to fabricate three groups of mat scaffolds EMAT-1 (ECM derivatized alginate thrombin-mat), EMAT-2, and EMAT-3, respectively by the freeze-drying process. To enhance the hemostatic activity, thrombin was loaded onto the scaffolds. Another group, AT, without any derivatized alginate was additionally included in order to comparative analysis. Physical characteristics revealed that the porous mat scaffold showed enhancement in degradation and swelling ability with the increase in ECM content. The higher cell proliferation, migration, and cell viability were noticed in the higher ECM-containing samples EMAT-2 and EMAT-3. In vivo studies using rodent hepatic and rabbit ear models were carried out to ensure the hemostatic ability of the scaffolds. EMAT-2 and EMAT-3 demonstrate excellent liver regeneration ability in rat models. Moreover, the rat cutaneous wound model depicted that EMAT-3 dramatically elevated the skin's healing ability, thereby rendering it an excellent candidate for future clinical application in wound healing.
Assuntos
Alginatos , Matriz Extracelular , Liofilização , Fígado , Pele , Alicerces Teciduais , Cicatrização , Animais , Alginatos/química , Matriz Extracelular/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Coelhos , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Ratos , Alicerces Teciduais/química , Masculino , Humanos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Trombina/metabolismo , Sobrevivência Celular/efeitos dos fármacosRESUMO
The utilization of polymethyl methacrylate (PMMA) bone cement is employed for the purpose of stabilizing fractured vertebral bodies. The existence of a mechanical imbalance in hard polymethylmethacrylate (PMMA) bone cement has the potential to increase the likelihood of a fracture occurring in the neighbouring vertebral body. In order to reduce potential difficulties, the primary goal of this study is to investigate the potential benefits of increasing PMMA bone cement's bioactivity and lowering its elastic modulus. The incorporation of a 10% volume fraction of hyaluronic acid (HyA) and polyethylene glycol (PEG) into the bone cement led to an improvement in the bioactivity and decreasing of elastic modulus of polymethylmethacrylate (PMMA). The integration of HyPE gel phase presents several advantages over pure PMMA bone cement, including enhanced setting parameters, improved degradability, and increased biocompatibility. The gel phase is additionally accountable for a reduction in the elastic modulus of polymethylmethacrylate (PMMA) bone cement. In addition, the existence of a porous structure that arises from the degradation of the HyPE gel phase delivers a significant amount of room, thereby enhancing the process of bone regeneration when implanted in the femur of rabbits. The utilization of HyPE in PMMA has been shown through comprehensive µ-CT analysis to enhance bone formation, thereby promoting osteointegration at the implantation site. Furthermore, the histological analysis demonstrated the existence of osteogenic activity in the PMMA polyethylene glycol supplemented with 10% HyA and 10% PEG after a 2-month period subsequent to implantation.
Assuntos
Cimentos Ósseos , Ácido Hialurônico , Polietilenoglicóis , Polimetil Metacrilato , Polimetil Metacrilato/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Coelhos , Animais , Polietilenoglicóis/química , Cimentos Ósseos/química , Módulo de Elasticidade , Teste de Materiais , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Microtomografia por Raio-X , Regeneração Óssea/efeitos dos fármacos , PorosidadeRESUMO
In the aging society, slow bone regeneration poses a serious hindrance to the quality of life. To deal with this problem, in this study, we have combined irisin with the bioglass regular beads to enhance the bone regeneration process. For this purpose, highly porous bioglass was obtained as spherical beads by using sodium alginate. The bioglass was evaluated by various analytical techniques such as SEM, EDS, XRD, and pore size distribution. The results depicted that porous bioglass was prepared correctly and SEM analysis showed a highly porous bioglass was formulated. On this bioglass, irisin was loaded with the assistance of polyvinyl alcohol (PVA) in three concentrations (50 ng/ml, 100 ng/ml, and 150 ng/ml per 1 g of bioglass). SEM analysis showed that pores are covered with PVA. The irisin release profile showed a sustained release over the time period of 7 days. In vitro, biocompatibility evaluation by the MC3T3E1 cells showed that prepared bioglass and irisin loaded bioglass (BGI50, BGI100, and BG150) are highly biocompatible. Alizarin Red staining analysis showed that after 2 weeks BGI50 samples showed highest calcium nodule formation. In vivo in the rabbit femur model was conducted for 1 and 2 months. BGI150 samples showed highest BV/TV ratio of 37.1 after 2 months. The histological data showed new bone formation surrounding the beads and with beads loaded with irisin. Immunohistochemistry using markers OPN, RUNX, COL, and ALP supported the osteogenic properties of the irisin-loaded bioglass beads. The results indicated that irisin-loaded bioglass displayed remarkable bone regeneration.
Assuntos
Osteogênese , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Fibronectinas , Qualidade de Vida , Cerâmica/química , Álcool de PolivinilRESUMO
Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Assuntos
Nanofibras , Enxerto Vascular , Ratos , Animais , Heparina/química , Fator A de Crescimento do Endotélio Vascular/química , Hiperplasia/prevenção & controle , Nanofibras/química , Prótese Vascular , Neointima/prevenção & controle , Poliésteres/químicaRESUMO
This study used a unique approach by developing a bilayer system that can simultaneously accomplish non-adhesion, hemostatic, and tissue regenerative properties. In this system, agarose was used as a carrier material, with an agarose-TEMPO-oxidized cellulose nanofiber (TOCN), (AT) layer acting as a non-adhesion layer and an Agarose-Extracellular matrix, (AE) layer acting as a tissue regenerative layer. Thrombin was loaded on the AE layer as an initiator of the healing process, by hemostasis. AT 1:4 showed 79.3 % and AE 1:4 showed 84.66 % cell viability initially confirming the biocompatible nature of the layers. The AE layer showed cell attachment and proliferation on its surface whereas on the AT layer, cells are visible but no attachment was observed. Furthermore, in vivo analysis was conducted. The non-adhesive layer was grafted between the cecum and peritoneal wall which showed that (AT 1:4) displayed remarkable non-adhesion properties as compared to a commercial product and the non-treated group. Hemostasis and tissue regeneration ability were evaluated using rat liver models. The bleeding time of AE 1:4TH was recorded as 160 s and the blood loss was 5.6 g. The results showed that (AE 1:4) displayed effective regeneration ability in the liver model after two weeks.
Assuntos
Celulose Oxidada , Hemostáticos , Nanofibras , Ratos , Animais , Hemostáticos/farmacologia , Sefarose , Hidrogéis , Hemostasia , Aderências Teciduais , Matriz ExtracelularRESUMO
Postoperative pancreatic leakage due to pancreatitis in patients is a life-threatening surgical complication. The majority of commercial barriers are unable to meet the demands for pancreatic leakage due to poor adhesiveness, toxicity, and inability to degrade. In this study, we fabricated mitomycin-c and thrombin-loaded multifunctional dual-layer nanofibrous membrane with a combination of alginate, PCL, and gelatin to resolve the leakage due to suture line disruption, promote hemostasis, wound healing, and prevent postoperative tissue adhesion. Electrospinning was used to fabricate the dual-layer system. The study results demonstrated that high gelatin and alginate content in the inner layer decreased the fiber diameter and water contact angle, and crosslinking allowed the membrane to be more hydrophilic, making it highly biodegradable, and adhering firmly to the tissue surfaces. The results of in vitro biocompatibility and hemostatic assay revealed that the dual-layer had a higher cell proliferation and showed effective hemostatic properties. Moreover, the in vivo studies and in silico molecular simulation indicated that the dual layer was covered at the wound site, prevented suture disruption and leakage, inhibited hemorrhage, and reduced postoperative tissue adhesion. Finally, the study results proved that dual-layer multifunctional nanofibrous membrane has a promising therapeutic potential in preventing postoperative pancreatic leakage.
Assuntos
Hemostáticos , Nanofibras , Humanos , Gelatina/farmacologia , Aderências Teciduais/prevenção & controle , Poliésteres/farmacologia , AlginatosRESUMO
The present study has attempted to evaluate the endothelialization and smooth muscle regeneration efficiency of a novel dual-layer small-diameter vascular graft. Two types of layers (PCL-mPEG-VEGF and PCL-Chitosan-PDGF) were fabricated to find out the best layer giving endothelialization support for the lumen and unique contractile function for outer layer of blood vessels. Platelet-derived growth factor (PDGF) and chitosan were immobilized onto PCL surface by aminolysis-based surface modification technique. Besides, Poly (ethylene glycol) methyl ether (mPEG) and vascular endothelial growth factor (VEGF) were directly blended with PCL. Morphological analysis of membranes ensured consistency of average fibers diameter with native extracellular matrix. A favorable interaction of PCL-mPEG-VEGF with cow pulmonary endothelial cells (CPAEs) and PCL-Chitosan-PDGF with rat bone marrow mesenchymal stem cells (RBMSCs) was obtained during in vitro study. Controlled growth factor release patterns were found from both layers. Further, PCL-mPEG-VEGF exhibited endothelial markers expression properties from RBMSCs. Up-regulation of SMCs markers expression was significantly ensured by the PCL-Chitosan-PDGF membrane. Thus, PCL-mPEG-VEGF and PCL-Chitosan-PDGF were preferred as inner and outer layers respectively of a finally prepared tubular hybrid tissue engineered small diameter vascular graft. Finally, the dual-layer vascular graft was implanted onto a rat abdominal aorta model for 2 months. The extracted samples exhibited the presence of endothelial marker (ICAM 1) in the inner layer and smooth muscle cell marker (αSMA) in the outer layer as well as substantial amount of collagen deposition was observed in the both layers.
Assuntos
Quitosana , Polietilenoglicóis , Fator A de Crescimento do Endotélio Vascular , Feminino , Bovinos , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quitosana/farmacologia , Quitosana/química , Fator de Crescimento Derivado de Plaquetas/farmacologia , Células Endoteliais/metabolismo , Prótese Vascular , Poliésteres/químicaRESUMO
3D-printed titanium (Ti) cages present an attractive alternative for addressing issues related to osteoporosis-induced fractures, accidental fractures, and spinal fusion surgery due to disc herniation. These Ti-based bone implants possess superior strength compared to other metals, allowing for versatile applications in orthopedic scenarios. However, when used as standalone solutions, certain considerations may arise, such as interaction with soft tissues. Therefore, to overcome these issues, the combination with hydrogel has been considered. In this study, to impart Ti with regenerative abilities a 3D-printed Ti cage was loaded with gelatin and hyaluronic acid (G-H) to improve the cell attachment ability of the Ti-based bone implants. The void spaces within the mesh structure of the 3D Ti cage were filled with G-H, creating a network of micro-sized pores. The filled G-H acted as the bridge for the cells to migrate toward the large inner pores of the 3D Ti cage. Due to the microporous surface and slow release of gelatin and hyaluronic acid, the biocompatibility of the coated Ti cage was increased with an elevation in osteoconduction as depicted by the up-regulation of bone-related gene expressions. The in vivo implantation in the rabbit femur model showed enhanced bone regeneration due to the coated G-H on the Ti cage compared to the pristine hollow Ti cage. The G-H filled the large holes of the 3D Ti cage that acted as a bridge for the cells to travel inside the implant and aided in the fast regeneration of bone.
RESUMO
Multifunctional membranes S7P0.7, S7P3.0, and dual membranes composed of soya protein isolate (SPI) and polyethylene oxide (PEO) were produced for wound dressing applications. The internal structure of the membranes was confirmed by scanning electron microscopy (SEM) to be homogeneous and coarser with a porous-like network. S7P3.0 showed the tensile strength of 0.78 ± 0.04 MPa. In the absence of antibiotics, the dual membrane (combination of S7P0.7 and S7P3.0) exhibited potential antibacterial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. Hemolysis quantitative data presented in the image demonstrates that all samples exhibited hemolysis levels below 5 %. Dual membrane showed 77.93 ± 9.5 % blood uptake which reflects its absorption capacity. The combination of S7P0.7 and S7P3.0 influenced the dual membrane's antibacterial, biocompatibility, and good hemolytic potentials. The dual membranes' promising histology features after implantation suggest they could be used as wound dressings.
Assuntos
Hemólise , Polietilenoglicóis , Humanos , Polietilenoglicóis/química , Porosidade , Bandagens , Antibacterianos/químicaRESUMO
Despite significant advancements made in cardiovascular stents, restenosis, thrombosis, biocompatibility, and clinical complications remain a matter of concern. Herein, we report a biodegradable Mg alloy stent with a dual effect of the drug (Paclitaxel) and growth factor (VEGF) release. To mitigate the fast degradation of Mg alloy, inorganic and organic coatings were formed on the alloy surface. The optimized hierarchal sequence of the coating was the first layer consisting of magnesium fluoride, followed by poly(l-lactide) and hydroxyapatite coating, and finally sealed by a polycaprolactone layer (MgC). PLLA and HAp were used to increase the adhesion strength and biocompatibility of the coating. Paclitaxel and VEGF were loaded in the final PCL layer (Mg-C/PTX-VEGF). As compared to bare Mg alloy (28 % weight loss), our MgC system showed (3.1 % weight loss) successful decrease in the degradation rate. Further, the in vitro biocompatibility illustrated the highly biocompatible nature of our drug and growth factor-loaded system. The in vivo results displayed that the drug loading decreased the inflammation and neointimal hyperplasia as indicated by the α-SMA and CD-68 antibody staining. The growth factor helped in the endothelialization which was established by the FLKI and ICAM antibody staining of the tissue.
RESUMO
Natural biopolymers have attracted considerable attention in a variety of biomedical applications. Herein, tempo-oxidized-cellulose nanofibers (T) were incorporated into sodium alginate/chitosan (A/C) to reinforce the physicochemical properties and further modified with decellularized skin extracellular matrix (E). A unique ACTE aerogel was successfully prepared, and its nontoxic behavior was validated using mouse fibroblast L929 cells. In vitro hemolysis results revealed excellent platelet adhesion and fibrin network formation abilities of the obtained aerogel. A high speed of homeostasis was attained based on the quick clotting in <60 s. Skin regeneration in vivo experiments were conducted using the ACT1E0 and ACT1E10 groups. In comparison to ACT1E0 samples, ACT1E10 samples demonstrated enhanced skin wound healing with increased neo-epithelialization, increased collagen deposition, and extracellular matrix remodeling. ACT1E10 was found to be a promising aerogel for skin defect regeneration due to its improved wound-healing ability.
Assuntos
Celulose Oxidada , Quitosana , Hemostáticos , Nanofibras , Camundongos , Animais , Celulose Oxidada/farmacologia , Hemostáticos/farmacologia , Alginatos/química , Cicatrização , Pele , Quitosana/química , Nanofibras/químicaRESUMO
Vasospasm during reconstructive microsurgery is a common, uncertain, and devastating phenomena concerning flap survival. Topical vasodilators as antispasmodic agents are widely used to reduce vasospasm and enhance microvascular anastomosis in reconstructive microsurgery. In this study, thermo-responsive hydrogel (CNH) was fabricated by grafting chitosan (CS) and hyaluronic acid (HA) to poly(N-isopropylacrylamide) (PNIPAM). Papaverine, an anti-spasmodic agent, was then loaded to evaluate its effect on rat skin flap survival. Post-operative flap survival area and water content of rat dorsal skin flap were measured at 7 days after intradermal application of control hydrogel (CNHP0.0) and papaverine loaded hydrogel (CNHP0.4). Tissue malondialdehyde (MDA) content and superoxide dismutase (SOD) activity was measured using enzyme linked immunosorbent assay (ELISA) to determine oxidative stress in flaps. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were performed to evaluate flap angiogenesis and inflammatory markers. Results showed that CNHP0.4 hydrogel could reduce tissue edema (35.63 ± 4.01%), improve flap survival area (76.30 ± 5.39%), increase SOD activity and decrease MDA content. Consequently, it also increased mean vessel density, upregulated expression of CD34 and VEGF, decreased macrophage infiltration, and reduced CD68 and CCR7 expression based on IHC staining. Overall, these results indicate that CNHP0.4 hydrogel can enhance angiogenesis with anti-oxidative and anti-inflammatory effects and promote skin flap survival by preventing vascular spasm.
Assuntos
Hidrogéis , Papaverina , Ratos , Animais , Ratos Sprague-Dawley , Papaverina/farmacologia , Hidrogéis/farmacologia , Retalhos Cirúrgicos/transplante , Sobrevivência de Enxerto , Superóxido Dismutase/metabolismoRESUMO
Designing a functional and efficient blood-clotting agent is a major challenge. In this research, hemostatic scaffolds (GSp) were prepared from the superabsorbent, inter-crosslinked polymer sodium polyacrylate (Sp) bound to a natural protein gelatin (G) loaded with thrombin (Th) by a cost-effective freeze-drying method. Five compositions were grafted (GSp0.0, Gsp0.1, GSp0.2, GSp0.3, GSp0.3-Th) where the concentration of Sp varied but the ratios of G remained the same. The fundamental physical characteristics that increased the amounts of Sp with G gave synergistic effects after interacting with thrombin. Due to the presence of superabsorbent polymer (SAP) swelling capacities in GSp0.3 and GSp0.3-Th surge forward 6265% and 6948%, respectively. Pore sizes became uniform and larger (ranging ≤ 300 µm) and well-interconnected. The water-contact angle declined in GSp0.3 and GSp0.3-Th to 75.73 ± 1.097 and 75.33 ± 0.8342 degrees, respectively, thus increasing hydrophilicity. The pH difference was found to be insignificant as well. In addition, an evaluation of the scaffold in in vitro biocompatibility with the L929 cell line showed cell viability >80%, so the samples were nontoxic and produced a favorable environment for cell proliferation. The composite GSp0.3-Th revealed the lowest HR (%) (2.601%), and the in vivo blood-clotting time (s) and blood loss (gm) supported hemostasis. Overall, the results showed that a novel GSp0.3-Th scaffold can be a potential candidate as a hemostatic agent.
RESUMO
Present study describes about hybrid hemostat developed with alginate (Alg), chitosan (Chito) and TEMPO-oxidized nanofibrillar cellulose (TOCNF) via lyophilization. All samples were analyzed under scanning electron microscopy (SEM) to determine their microstructure, size, and distribution of pores. Cell viability and proliferation of the scaffolds tested using fibroblast type L929 cells, showed it to be an excellent medium for cell generation. Blood coagulation started in â¼7.5 min, and most of the fibrin network formation took place in the Alg-Chito-TOCNF sponge, making it a suitable hemostatic material.
Assuntos
Celulose Oxidada , Quitosana , Hemostáticos , Quitosana/química , Hemostáticos/farmacologia , Alginatos/química , Celulose/química , Alicerces Teciduais/químicaRESUMO
Three-dimensional (3D) printed titanium (Ti-6Al-4V alloy) cages are widely used for spinal fusion applications. However, the structural design and shape of the cages are a major determinant of the optimal clinical outcome. In this study, we constructed a newly designed 3D-printed helical-shaped titanium cage (HTC) with a flexible body, and compared its healing and fusion efficacy in cervical vertebral defects after corpectomy in rabbits to that of a 3D-printed traditional titanium cage (TTC). We performed radiological examinations 1 and 16 weeks after TTC and HTC implantation. We assessed bone ingrowth in TTC and HTC using micro-computed tomography (micro-CT) and histological staining of tissue sections at 16 weeks. The radiographic data showed that the HTC-implanted group had better restoration of vertebral height than the TTC group, indicating a lower risk of cage subsidence. The micro-CT and histological observations showed that HTC promoted bone regeneration and osseointegration more effectively than TTC. Histomorphometry further revealed significant new bone formation in the HTC group compared to the TTC group. These findings demonstrate that HTC has better healing and bone fusion effects than TTC in cervical vertebral defects in rabbits, indicating its potential clinical value.
RESUMO
In this study, we investigated the physico-biological and in-vivo evaluation of irisin loaded 45S5 bioglass bone graft for enhancing osteoblastic differentiation and bone regeneration in rat femur head defect model. Highly porous structure was obtained in the bioglass by burn-out process with varying the concentration of poly (methyl methacrylate) (PMMA) spheres. 10 % polyvinyl alcohol (PVA) was used as a binder for the sustain releasing of irisin on porous bioglass. Different concentrations of irisin were loaded on the selected bioglass samples and these were further evaluated for the biocompatibility and osteoblastic differentiation properties. The in vitro results demonstrated not only its biocompatibility but also that it stimulated pre-osteoblast differentiation. The in vivo data showed new bone formation as well as expression of osteogenic proteins like alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and collagen-1 (Col-1). Our results support the use of irisin loaded bioglass for the use of early bone regeneration.
Assuntos
Fibronectinas , Vidro , Ratos , Animais , Porosidade , Vidro/química , Regeneração ÓsseaRESUMO
Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.
RESUMO
Cartilage damage is the leading cause of osteoarthritis (OA), especially in an aging society. Mimicking the native cartilage microenvironment for chondrogenic differentiation along with constructing a stable and controlled architectural scaffold is considerably challenging. In this study, three-dimensional (3D) printed scaffolds using tempo-oxidized cellulose nanofiber (TOCN), decellularized extracellular matrix (dECM), and sodium alginate (SA) were fabricated for cartilage tissue regeneration. We prepared three groups (dECM80, dECM50, dECM20) of 3D printable hydrogels with different ratios of TOCN and dECM where SA concentration remained the same. Two-step crosslinking was performed with CaCl2 solution to achieve the highly stable 3D printed scaffolds. Finally, the fundamental physical characterizations showed that increasing the ratio of TOCN with dECM significantly improved the viscoelastic behaviour, stability, mechanical properties, and printability of the scaffolds. Based on the results, the 3D printed dECM50 scaffolds with controlled and identical pore sizes increased the whole-layer integrity and nutrient supply in each layer of the scaffold. Furthermore, evaluation of in vitro and in vivo biocompatibility of the scaffolds with rBMSCs indicated that dECM50 scaffolds provided a suitable microenvironment for cell proliferation and promoted chondrogenesis by remarkably expressing the cartilage-specific markers. This study demonstrates that 3D printed dECM50 scaffolds provide a favourable and promising microenvironment for cartilage tissue regeneration.
Assuntos
Celulose Oxidada , Nanofibras , Alicerces Teciduais , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Alginatos/farmacologia , Cartilagem , Impressão TridimensionalRESUMO
Guided bone regeneration (GBR) membranes favor periodontal regrowth, but they still have certain limitations, such as improper biodegradation and poor mechanical property. To overcome these shortcomings, we have generated a unique multifunctional membrane. A polycaprolactone/gelatin/ß-TCP and alginate/gelatin trilayered construction was fabricated through electrospinning and casting technology. The prepared membranes have suitable physicomechanical and in-vitro properties to confirm the compatibility of the product in the body. Phase analysis, functional groups, surface microstructure, and contact angle were measured as basic characteristics. For a mechanical performance evaluation, the tensile strength at suturing point was measured through pullout tensile strength test, and it showed the suture capability of bi-layered membranes. Highest tensile strength for A75G25 was recorded with 2.9 ± 0.15 MPa with 105% strain. Further, the osteoblast and fibroblast-type cell toxicity results showed that the electrospun membrane offered compatible environment to cells while the alginate sheet was found to be sufficiently capable to suppress the cellular attachment while also being a nontoxic material. Post-implantation, according to the in-vivo conclusions of the tri-layered membrane, there was appreciable bone formation. Compared to an implant without membrane covering, enhanced new bone formation can be identified after 8 weeks of implantation with P1G4ß10 membranes-covered site.