Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
PNAS Nexus ; 3(5): pgae156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715730

RESUMO

The increasing need for precise dietary monitoring across various health scenarios has led to innovations in wearable sensing technologies. However, continuously tracking food and fluid intake during daily activities can be complex. In this study, we present a machine-learning-powered smart neckband that features wireless connectivity and a comfortable, foldable design. Initially considered beneficial for managing conditions such as diabetes and obesity by facilitating dietary control, the device's utility extends beyond these applications. It has proved to be valuable for sports enthusiasts, individuals focused on diet control, and general health monitoring. Its wireless connectivity, ergonomic design, and advanced classification capabilities offer a promising solution for overcoming the limitations of traditional dietary tracking methods, highlighting its potential in personalized healthcare and wellness strategies.

2.
ACS Appl Mater Interfaces ; 16(20): 26613-26623, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728055

RESUMO

Strain gauges, particularly for wearable sensing applications, require a high degree of stretchability, softness, sensitivity, selectivity, and linearity. They must also steer clear of challenges such as mechanical and electrical hysteresis, overshoot behavior, and slow response/recovery times. However, current strain gauges face challenges in satisfying all of these requirements at once due to the inevitable trade-offs between these properties. Here, we present an innovative method for creating strain gauges from spongy Ag foam through a steam-etching process. This method simplifies the traditional, more complex, and costly manufacturing techniques, presenting an eco-friendly alternative. Uniquely, the strain gauges crafted from this method achieve an unparalleled gauge factor greater than 8 × 103 at strains exceeding 100%, successfully meeting all required attributes without notable trade-offs. Our work includes systematic investigations that reveal the intricate structure-property-performance relationship of the spongy Ag foam with practical demonstrations in areas such as human motion monitoring and human-robot interaction. These breakthroughs pave the way for highly sensitive and selective strain gauges, showing immediate applicability across a wide range of wearable sensing applications.

3.
ACS Sens ; 9(2): 662-673, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38300847

RESUMO

Self-healing hydrogels are in high demand for wearable sensing applications due to their remarkable deformability, high ionic and electrical conductivity, self-adhesiveness to human skin, as well as resilience to both mechanical and electrical damage. However, these hydrogels face challenges such as delayed healing times and unavoidable electrical hysteresis, which limit their practical effectiveness. Here, we introduce a self-healing hydrogel that exhibits exceptionally rapid healing with a recovery time of less than 0.12 s and an ultralow electrical hysteresis of less than 0.64% under cyclic strains of up to 500%. This hydrogel strikes an ideal balance, without notable trade-offs, between properties such as softness, deformability, ionic and electrical conductivity, self-adhesiveness, response and recovery times, durability, overshoot behavior, and resistance to nonaxial deformations such as twisting, bending, and pressing. Owing to this unique combination of features, the hydrogel is highly suitable for long-term, durable use in wearable sensing applications, including monitoring body movements and electrophysiological activities on the skin.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Eletricidade , Condutividade Elétrica , Movimento
4.
Sci Adv ; 10(1): eadk4295, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170779

RESUMO

Advances in electroluminescent threads, suitable for weaving or knitting, have opened doors for the development of light-emitting textiles, driving growth in the market for flexible and wearable displays. Although direct embroidery of these textiles with custom designs and patterns could offer substantial benefits, the rigorous demands of machine embroidery challenge the integrity of these threads. Here, we present embroiderable multicolor electroluminescent threads-in blue, green, and yellow-that are compatible with standard embroidery machines. These threads can be used to stitch decorative designs onto various consumer fabrics without compromising their wear resistance or light-emitting capabilities. Demonstrations include illuminating specific messages or designs on consumer products and delivering emergency alerts on helmet liners for physical hazards. Our research delivers a comprehensive toolkit for integrating light-emitting textiles into trendy, customized crafts tailored to the unique requirements of diverse flexible and wearable displays.

5.
IEEE Trans Biomed Circuits Syst ; 18(2): 396-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37938943

RESUMO

Opioid-induced overdose is one of the leading causes of death among the US population under the age of 50. In 2021 alone, the death toll among opioid users rose to a devastating number of over 80,000. The overdose process can be reversed by the administration of naloxone, an opioid antagonist that rapidly counteracts the effects of opioid-induced respiratory depression. The idea of a closed-loop opioid overdose detection and naloxone delivery has emerged as a potential engineered solution to mitigate the deadly effects of the opioid epidemic. In this work, we introduce a wrist-worn wearable device that overcomes the portability issues of our previous work to create a closed-loop drug-delivery system, which includes (1) a Near-Infrared Spectroscopy (NIRS) sensor to detect a hypoxia-driven opioid overdose event, (2) a MOSFET switch, and (3) a Zero-Voltage Switching (ZVS) electromagnetic heater. Using brachial artery occlusion (BAO) with human subjects (n = 8), we demonstrated consistent low oxygenation events. Furthermore, we proved our device's capability to release the drug within 10 s after detecting a hypoxic event. We found that the changes in the oxyhemoglobin, deoxyhemoglobin and oxygenation saturation levels ( SpO2) were different before and after the low-oxygenation events ( 0.001). Although additional human experiments are needed, our results to date point towards a potential tool in the battle to mitigate the effects of the opioid epidemic.


Assuntos
Overdose de Drogas , Overdose de Opiáceos , Humanos , Analgésicos Opioides/uso terapêutico , Overdose de Opiáceos/tratamento farmacológico , Antagonistas de Entorpecentes/uso terapêutico , Naloxona/uso terapêutico , Overdose de Drogas/tratamento farmacológico
6.
ACS Nano ; 17(24): 25014-25026, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38059775

RESUMO

Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.


Assuntos
Microscopia , Nanofios , Sobrevivência Celular , Miócitos Cardíacos , Agulhas
7.
Artigo em Inglês | MEDLINE | ID: mdl-38041570

RESUMO

Continuous real-time monitoring of biomarkers in interstitial fluid is essential for tracking metabolic changes and facilitating the early detection and management of chronic diseases such as diabetes. However, developing minimally invasive sensors for the in situ analysis of interstitial fluid and addressing signal delays remain a challenge. Here, we introduce a wearable sensor patch incorporating hydrogel microneedles for rapid, minimally invasive collection of interstitial fluid from the skin while simultaneously measuring biomarker levels in situ. The sensor patch is stretchable to accommodate the swelling of the hydrogel microneedles upon extracting interstitial fluid and adapts to skin deformation during measurements, ensuring consistent sensing performance in detecting model biomarker concentrations, such as glucose and lactate, in a mouse model. The sensor patch exhibits in vitro sensitivities of 0.024 ± 0.002 µA mM-1 for glucose and 0.0030 ± 0.0004 µA mM-1 for lactate, with corresponding linear ranges of 0.1-3 and 0.1-12 mM, respectively. For in vivo glucose sensing, the sensor patch demonstrates a sensitivity of 0.020 ± 0.001 µA mM-1 and a detection range of 1-8 mM. By integrating a predictive model, the sensor patch can analyze and compensate for signal delays, improving calibration reliability and providing guidance for potential optimization in sensing performance. The sensor patch is expected to serve as a minimally invasive platform for the in situ analysis of multiple biomarkers in interstitial fluid, offering a promising solution for continuous health monitoring and disease management.

8.
ACS Nano ; 17(22): 22733-22743, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37933955

RESUMO

E-textiles, also known as electronic textiles, seamlessly merge wearable technology with fabrics, offering comfort and unobtrusiveness and establishing a crucial role in health monitoring systems. In this field, the integration of custom sensor designs with conductive polymers into various fabric types, especially in large areas, has presented significant challenges. Here, we present an innovative additive patterning method that utilizes a dual-regime spray system, eliminating the need for masks and allowing for the programmable inscription of sensor arrays onto consumer textiles. Unlike traditional spray techniques, this approach enables in situ, on-the-fly polymerization of conductive polymers, enabling intricate designs with submillimeter resolution across fabric areas spanning several meters. Moreover, it addresses the nozzle clogging issues commonly encountered in such applications. The resulting e-textiles preserve essential fabric characteristics such as breathability, wearability, and washability while delivering exceptional sensing performance. A comprehensive investigation, combining experimental, computational, and theoretical approaches, was conducted to examine the critical factors influencing the operation of the dual-regime spraying system and its role in e-textile fabrication. These findings provide a flexible solution for producing e-textiles on consumer fabric items and hold significant implications for a diverse range of wearable sensing applications.

9.
Laryngoscope Investig Otolaryngol ; 8(5): 1294-1303, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899858

RESUMO

Objective: Use of computational fluid dynamic (CFD) simulations to measure the changes in upper airway geometry and aerodynamics during (a) an episode of Exercise-Induced Laryngeal Obstruction (EILO) and (b) speech therapy exercises commonly employed for patients with EILO. Methods: Magnetic resonance imaging stills of the upper airway including the nasal and oral cavities from an adult female were used to re-construct three-dimensional geometries of the upper airway. The CFD simulations were used to compute the maximum volume flow rate (l/s), pressure (Pa), airflow velocity (m/s) and area of cross-section opening in eight planes along the vocal tract, separately for inhalation and exhalation. Results: Numerical predictions from three-dimensional geometrical modeling of the upper airway suggest that the technique of nose breathing for inhalation and pursed lip breathing for exhalation show most promising pressure conditions and cross-sectional diameters for rescue breathing exercises. Also, if EILO is due to the constriction at the vocal fold level, then a quick sniff may also be a proper rescue inhalation exercise. EILO affects both the inspiratory and the expiratory phases of breathing. Conclusions: A prior knowledge of the supraglottal aerodynamics and the corresponding upper airway geometry from CFD analysis has the potential to assist the clinician in choosing the most effective rescue breathing technique for optimal functional outcome of speech therapy intervention in patients with EILO and in understanding the pathophysiology of EILO on a case-by-case basis with future studies. Level of Evidence: 4.

10.
Adv Mater ; 35(7): e2209377, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461881

RESUMO

Inverse-vulcanized polymeric sulfur has received considerable attention for application in waste-based infrared (IR) polarizers with high polarization sensitivities, owing to its high transmittance in the IR region and thermal processability. However, there have been few reports on highly sensitive polymeric sulfur-based polarizers by replication of pre-simulated dimensions to achieve a high transmission of the transverse magnetic field (TTM ) and extinction ratio (ER). Herein, a 400-nanometer-pitch mid-wavelength infrared bilayer linear polarizer with self-aligned metal gratings is introduced on polymeric sulfur gratings integrated with a spacer layer (SM-polarizer). The dimensions of the SM-polarizer can be closely replicated using pre-simulated dimensions via a systematic investigation of thermal nanoimprinting conditions. Spacer thickness is tailored from 40 to 5100 nm by adjusting the concentration of polymeric sulfur solution during spin-coating. A tailored spacer thickness can maximize TTM in the broadband MWIR region by satisfying Fabry-Pérot resonance. The SM-polarizer yields TTM of 0.65, 0.59, and 0.43 and ER of 3.12 × 103 , 5.19 × 103 , and 5.81 × 103 at 4 µm for spacer thicknesses of 90, 338, and 572 nm, respectively. This demonstration of a highly sensitive and cost-effective SM-polarizer opens up exciting avenues for infrared polarimetric imaging and for applications in polarization manipulation.

11.
Nat Commun ; 13(1): 5518, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127347

RESUMO

Continuous monitoring of intraocular pressure, particularly during sleep, remains a grand challenge in glaucoma care. Here we introduce a class of smart soft contact lenses, enabling the continuous 24-hour monitoring of intraocular pressure, even during sleep. Uniquely, the smart soft contact lenses are built upon various commercial brands of soft contact lenses without altering their intrinsic properties such as lens power, biocompatibility, softness, transparency, wettability, oxygen transmissibility, and overnight wearability. We show that the smart soft contact lenses can seamlessly fit across different corneal curvatures and thicknesses in human eyes and therefore accurately measure absolute intraocular pressure under ambulatory conditions. We perform a comprehensive set of in vivo evaluations in rabbit, dog, and human eyes from normal to hypertension to confirm the superior measurement accuracy, within-subject repeatability, and user comfort of the smart soft contact lenses beyond current wearable ocular tonometers. We envision that the smart soft contact lenses will be effective in glaucoma care.


Assuntos
Lentes de Contato Hidrofílicas , Glaucoma , Animais , Cães , Glaucoma/terapia , Humanos , Pressão Intraocular , Oxigênio , Coelhos , Tonometria Ocular
12.
ACS Nano ; 16(8): 12134-12144, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35925652

RESUMO

Stretchable electrodes are widely used in next-generation wearable electronics. Recent studies incorporated designs that help rigid electrodes attain stretchability. However, these structures exhibited unsatisfactory charge/signal extraction efficiency because of their low areal fill factor. Additionally, they cannot be photolithographically patterned on polymer substrates because of their low adhesion, requiring additional complicated fabrication steps. We developed photolithographically patternable stretchable electrodes with complete coverage and enhanced charge-extraction efficiency. The electrodes, comprising double layers, included a chemically treated Ag nanowire mesh and Au thin film. The interfacial linker role of polyvinylpyrrolidone chemically strengthened the interfacial bonds, and the reinforced concrete structure of nanowire-embedded metal thin films enhanced the mechanical properties. Therefore, the electrodes provided superior efficiency and stability in capturing physical, electromagnetic, and electrophysiological signals while exceeding the existing stretchable electrode limits. A broad range of applications are foreseen, such as electrocardiogram sensing electrodes, strain sensors, temperature sensors, and antennas.

13.
Biosensors (Basel) ; 12(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448282

RESUMO

Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Têxteis
14.
Nat Nanotechnol ; 17(3): 222-223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256769
15.
Sci Adv ; 8(13): eabn1772, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353558

RESUMO

Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.


Assuntos
Lentes de Contato , Silício , Animais , Córnea , Sistemas de Liberação de Medicamentos , Coelhos , Silício/análise , Lágrimas/química
16.
Methods Mol Biol ; 2393: 863-876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837216

RESUMO

Swallowing is a critical function that enables humans to sustain life. When swallowing is compromised, the consequences can be devastating and include malnutrition, dehydration, respiratory compromise, and even death. Swallowing disorders (i.e., dysphagia) are very common in many disorders and diseases, such as stroke, ALS, Parkinson disease, and more, and in fact millions of people across the world are diagnosed with oropharyngeal swallowing disorders every year. Current rehabilitative interventions for dysphagia can be effective, but require daily performance of swallowing exercises that primarily rely on expensive biofeedback devices (e.g., oral manometers, electromyographic (EMG) devices, and endoscopic devices). These types of devices are often only available in medical facilities. However, it is not feasible or economically viable for patients to make multiple visits per day or week to a clinic to receive intensive treatment, especially given mobility limitations that many affected patients often experience. This can reduce treatment adherence and result in decreased rehabilitation potential, re-hospitalizations, and increased healthcare costs. To address this gap, we designed a novel specialized portable skin-mounted flexible sensor system that allows remote signal acquisition of swallowing-related signals. Herein, we report technical details for the fabrication of the skin-mounted flexible sensor patch that is tailored for the human submental (under the chin) area, enabling the continuous, reliable monitoring of both muscles' activity (i.e., EMG signals) and laryngeal movements during swallowing events. The sensor patch is wired to a portable reusable wireless (Bluetooth) unit compatible with smart watches, phones, and tablets for post-data analysis and reporting through a cloud server, which would potentially enable telemonitoring of patients with dysphagia.


Assuntos
Transtornos de Deglutição , Deglutição , Transtornos de Deglutição/diagnóstico , Eletromiografia , Humanos , Movimento , Doença de Parkinson
17.
Adv Mater ; 34(9): e2108021, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34951073

RESUMO

Increasing demand for wearable healthcare synergistically advances the field of electronic textiles, or e-textiles, allowing for ambulatory monitoring of vital health signals. Despite great promise, the pragmatic deployment of e-textiles in clinical practice remains challenged due to the lack of a method in producing custom-designed e-textiles at high spatial resolution across a large area. To this end, a programmable dual-regime spray that enables the direct custom writing of functional nanoparticles into arbitrary fabrics at sub-millimeter resolution over meter scale is employed. The resulting e-textiles retain the intrinsic fabric properties in terms of mechanical flexibility, water-vapor permeability, and comfort against multiple uses and laundry cycles. The e-textiles tightly fit various body sizes and shapes to support the high-fidelity recording of physiological and electrophysiological signals on the skin under ambulatory conditions. Pilot field tests in a remote health-monitoring setting with a large animal, such as a horse, demonstrate the scalability and utility of the e-textiles beyond conventional devices. This approach will be suitable for the rapid prototyping of custom e-textiles tailored to meet various clinical needs.


Assuntos
Dispositivos Eletrônicos Vestíveis , Animais , Eletrônica , Cavalos , Monitorização Ambulatorial , Têxteis
18.
Nature ; 597(7877): 503-510, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552257

RESUMO

Large, distributed collections of miniaturized, wireless electronic devices1,2 may form the basis of future systems for environmental monitoring3, population surveillance4, disease management5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and-inspired by wind-dispersed seeds6-we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures7-9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts.


Assuntos
Biomimética , Equipamentos e Provisões Elétricas , Miniaturização/instrumentação , Sementes , Vento , Tecnologia sem Fio/instrumentação , Colorimetria , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Fenômenos Mecânicos , Microfluídica , Vigilância da População/métodos , Rotação
19.
Nat Commun ; 12(1): 3710, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140475

RESUMO

The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Diagnóstico por Imagem/métodos , Infarto do Miocárdio/diagnóstico por imagem , Pericárdio/diagnóstico por imagem , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Modelos Animais de Doenças , Eletrocardiografia , Fenômenos Eletrofisiológicos , Processamento de Imagem Assistida por Computador , Tinta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Mioblastos/metabolismo , Mioblastos/patologia , Próteses e Implantes , Silicones/química , Análise Espaço-Temporal , Suínos , Ultrassonografia
20.
ACS Appl Mater Interfaces ; 13(20): 24024-24031, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33990134

RESUMO

Quasi-three-dimensionally designed metal-dielectric hybrid nanoantennas have provided a unique capability to control light at the nanoscale beyond the diffraction limit, which has enabled powerful optical manipulation techniques. However, the fabrication of these nanoantennas has largely relied on the use of nanolithography techniques that are time- and cost-consuming, impeding their application in wide-ranging use. Herein, we report a versatile methodology enabling the repetitive replication of these nanoantennas from their silicon molds with tailored optical features for infrared bandpass filtering. Comprehensive experimental and computational analyses revealed the underlying mechanism of this methodology and also provided a technical guideline for pragmatic translation into infrared filters in multispectral imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA