Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Toxicology ; 504: 153772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479551

RESUMO

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Compostos de Vanádio , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Compostos de Vanádio/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caderinas/metabolismo , Relação Dose-Resposta a Droga
2.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195004

RESUMO

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Assuntos
Cádmio , Metaloproteinase 2 da Matriz , Humanos , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Lipoilação , Pulmão , Transdução de Sinais , Fibrose , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo
3.
Toxicol Sci ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37941452

RESUMO

Early-life respiratory syncytial virus (RSV) infection (eRSV) is one of the leading causes of serious pulmonary disease in children. eRSV is associated with higher risk of developing asthma and compromised lung function later in life. Cadmium (Cd) is a toxic metal, widely present in the environment and in food. We recently showed that eRSV re-programs metabolism and potentiates Cd toxicity in the lung, and our transcriptome-metabolome-wide study showed strong associations between S-palmitoyl transferase expression and Cd-stimulated lung inflammation and fibrosis signaling. Limited information is available on the mechanism by which eRSV re-programs metabolism and potentiates Cd toxicity in the lung. In the current study, we used a mouse model to examine the role of protein S-palmitoylation (Pr-S-Pal) in low dose Cd-elevated lung metabolic disruption and inflammation following eRSV. Mice exposed to eRSV were later treated with Cd (3.3 mg CdCl2/L) in drinking water for 6 weeks (RSV+Cd). The role of Pr-S-Pal was studied using a palmitoyl transferase inhibitor, 2-bromopalmitate (BP, 10 µM). Inflammatory marker analysis showed that cytokines, chemokines and inflammatory cells were highest in the RSV+Cd group, and BP decreased inflammatory markers. Lung metabolomics analysis showed that pathways including phenylalanine, tyrosine and tryptophan, phosphatidylinositol and sphingolipid were altered across treatments. BP antagonized metabolic disruption of sphingolipid and glycosaminoglycan metabolism by RSV+Cd, consistent with BP effect on inflammatory markers. This study shows that Cd exposure following eRSV has a significant impact on subsequent inflammatory response and lung metabolism, which is mediated by Pr-S-Pal, and warrants future research for a therapeutic target.

4.
Drug Metab Dispos ; 50(9): 1182-1189, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752443

RESUMO

Precision medicine and exposomics require methods to assess xenobiotic metabolism in human metabolomic analyses, including the identification of known and undocumented drug and chemical exposures as well as their metabolites. Recent work demonstrated the use of high-throughput generation of xenobiotic metabolites with human liver S-9 fractions for their detection in human plasma and urine. Here, we tested whether a panel of lentivirally transduced human hepatoma cell lines (Huh7) that express individual cytochrome P450 (P450) enzymes could be used to generate P450-specific metabolites in a high-throughput manner, while simultaneously identifying the enzymes responsible. Cell-line activities were verified using P450-specific probe substrates. To increase analytical throughput, we used a pooling strategy where 36 chemicals were grouped into 12 unique mixtures, each mixture containing 6 randomly selected compounds, and each compound being present in two separate mixtures. Each mixture was incubated with 8 different P450 cell lines for 0 and 2 hours and extracts were analyzed using liquid chromatography-high-resolution mass spectrometry. Cell lines selectively metabolized test substrates, e.g., pazopanib, bupropion, and ß-naphthoflavone with expected substrate-enzyme specificities. Predicted metabolites from the remaining 33 compounds as well as many unidentified m/z features were detected. We also showed that a specific bupropion metabolite generated by CYP2B6 cells, but not detected in the S9 system, was identified in human samples. Our data show that the chemical mixtures approach accelerated characterization of xenobiotic chemical space, while simultaneously identifying enzyme sources that can be used for scalable generation of metabolites for their identification in human metabolomic analyses. SIGNIFICANCE STATEMENT: High-resolution mass spectrometry (HRMS) enables the detection of exposures to drugs and other xenobiotics in human samples, but chemical identification can be difficult for several reasons. This paper demonstrates the utility of a panel of engineered cytochrome P450-expressing hepatoma cells in a scalable workflow for production of xenobiotic metabolites, which will facilitate their use as surrogate standards to validate xenobiotic detection by HRMS in human metabolomic studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Bupropiona , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Xenobióticos
5.
Blood Adv ; 5(2): 399-413, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496741

RESUMO

Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.


Assuntos
Anemia Falciforme , Hipertensão Pulmonar , Anemia Falciforme/genética , Animais , Proliferação de Células , Células Endoteliais , Camundongos , NF-kappa B , PPAR gama/genética
6.
Drug Metab Rev ; 52(4): 455-471, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32898444

RESUMO

Many hepatic cytochrome P450 enzymes and their associated drug metabolizing activities are down-regulated in disease states, and much of this has been associated with inflammatory cytokines and their signaling pathways. One such pathway is the induction of inducible nitric oxide synthase (NOS2) and generation of nitric oxide (NO) in many tissues and cells including the liver and hepatocytes. Experiments in the 1990s demonstrated that NO could bind to and inhibit P450 enzymes, and suggested that inhibition of NOS could attenuate, and NO generation could mimic, the down-regulation by inflammatory stimuli of not only P450 catalytic activities but also of mRNA expression and protein levels of certain P450 enzymes. This review will summarize and examine the evidence that NO functionally inhibits and down-regulates P450 enzymes in vivo and in vitro, with a particular focus on the mechanisms by which these effects are achieved.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inflamação/enzimologia , Fígado/enzimologia , Óxido Nítrico/metabolismo , Animais , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Transdução de Sinais
7.
Mol Pharmacol ; 98(3): 267-279, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817462

RESUMO

Human cytochrome P450 (P450) CYP2B6 undergoes nitric oxide (NO)-dependent proteasomal degradation in response to the NO donor dipropylenetriamine NONOate (DPTA) and biologic NO in HeLa and HuH7 cell lines. CYP2B6 is also downregulated by NO in primary human hepatocytes. We hypothesized that NO or derivative reactive nitrogen species may generate adducts of tyrosine and/or cysteine residues, causing CYP2B6 downregulation, and selected Tyr and Cys residues for mutation based on predicted solvent accessibility. CYP2B6V5-Y317A, -Y380A, and -Y190A mutant proteins expressed in HuH7 cells were less sensitive than wild-type (WT) enzyme to degradation evoked by DPTA, suggesting that these tyrosines are targets for NO-dependent downregulation. The Y317A or Y380A mutants did not show increases in high molecular mass (HMM) species after treatment with DPTA or bortezomib + DPTA, in contrast to the WT enzyme. Carbon monoxide-releasing molecule 2 treatment caused rapid suppression of 2B6 enzyme activity, significant HMM species generation, and ubiquitination of CYP2B6 protein but did not stimulate CYP2B6 degradation. The CYP2B6 inhibitor 4-(4-chlorophenyl)imidazole blocked NO-dependent CYP2B6 degradation, suggesting that NO access to the active site is important. Molecular dynamics simulations predicted that tyrosine nitrations of CYP2B6 would cause significant destabilizing perturbations of secondary structure and remove correlated motions likely required for enzyme function. We propose that cumulative nitrations of Y190, Y317, and Y380 by reactive nitrogen species cause destabilization of CYP2B6, which may act synergistically with heme nitrosylation to target the enzyme for degradation. SIGNIFICANCE STATEMENT: This work provides novel insight into the mechanisms by which nitric oxide, which is produced in hepatocytes in response to inflammation, triggers the ubiquitin-dependent proteasomal degradation of the cytochrome P450 (P450) enzyme CYP2B6. Our data demonstrate that both nitration of specific tyrosine residues and interaction of nitric oxide (NO) with the P450 heme are necessary for NO to trigger ubiquitination and protein degradation.


Assuntos
Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/metabolismo , Doadores de Óxido Nítrico/farmacologia , Tirosina/química , Linhagem Celular , Citocromo P-450 CYP2B6/genética , Regulação para Baixo , Células HeLa , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cultura Primária de Células , Proteólise
8.
Drug Metab Dispos ; 48(7): 544-552, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350062

RESUMO

Several cytochrome P450 enzymes are known to be down-regulated by nitric oxide (NO). CYP2A6 is responsible for the metabolism of nicotine and several other xenobiotics, but its susceptibility to down-regulation by NO has not been reported. To address this question, we used Huh7 human hepatoma cell lines to express CYP2A6 with a C-terminal V5 tag (CYP2A6V5). NO donor treatment [dipropylenetriamine NONOate (DPTA)] down-regulated CYP2A6 protein to approximately 40% of control levels in 4 hours. An NO scavenging agent protected CYP2A6 from down-regulation by DPTA in a concentration-dependent manner, demonstrating that the down-regulation is NO-dependent. Experiments with the protein synthesis inhibitor cycloheximide showed that CYP2A6 protein down-regulation occurs posttranslationally. In the presence of proteasome inhibitors MG132 or bortezomib, NO-treated cells showed an accumulation of a high molecular mass signal, whereas autophagy inhibitors chloroquine and 3-methyladenine and the lysosomal and calpain inhibitor E64d had no effect. Immunoprecipitation of CYP2A6 followed by Western blotting with an antiubiquitin antibody showed that the high molecular mass species contain polyubiquitinated CYP2A6 protein. This suggests that NO led to the degradation of protein via the ubiquitin-proteasome pathway. The down-regulation by NO was blocked by the reversible CYP2A6 inhibitor pilocarpine but not by the suicide inhibitor methoxsalen, demonstrating that down-regulation requires NO access to the active site but does not require catalytic activity of the enzyme. These findings provide novel insights toward the regulation of CYP2A6 in a human cell line and can influence our understanding of CYP2A6-related drug metabolism. SIGNIFICANCE STATEMENT: This study demonstrates that the nicotine metabolizing enzyme CYP2A6 is down-regulated by nitric oxide, a molecule produced in large amounts in the context of inflammation and that is also inhaled from cigarette smoke. This occurs via ubiquitination and proteasomal degradation, and does not require catalytic activity of the enzyme. This work adds to the growing knowledge of the selective effect and mechanism of action of nitric oxide (NO) on cytochrome P450 enzymes and suggests a possible novel mode of interaction between nicotine and NO in cigarette smokers.


Assuntos
Citocromo P-450 CYP2A6/antagonistas & inibidores , Óxido Nítrico/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Fumar Cigarros/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Nicotina/metabolismo , Óxido Nítrico/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
9.
Malar J ; 18(1): 234, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299982

RESUMO

BACKGROUND: Given the central importance of anti-malarial drugs in the treatment of malaria, there is a need to understand the effect of Plasmodium infection on the broad spectrum of drug metabolizing enzymes. Previous studies have shown reduced clearance of quinine, a treatment for Plasmodium infection, in individuals with malaria. METHODS: The hepatic expression of a large panel of drug metabolizing enzymes was studied in the livers of mice infected with the AS strain of Plasmodium chabaudi chabaudi, a nonlethal parasite in most strains of mice with several features that model human Plasmodium infections. C57BL/6J mice were infected with P. chabaudi by intraperitoneal injection of infected erythrocytes and sacrificed at different times after infection. Relative hepatic mRNA levels of various drug metabolizing enzymes, cytokines and acute phase proteins were measured by reverse transcriptase-real time PCR. Relative levels of cytochrome P450 proteins were measured by Western blotting with IR-dye labelled antibodies. Pharmacokinetics of 5 prototypic cytochrome P450 substrate drugs were measured by cassette dosing and high-resolution liquid chromatography-mass spectrometry. The results were analysed by MANOVA and post hoc univariate analysis of variance. RESULTS: The great majority of enzyme mRNAs were down-regulated, with the greatest effects occurring at the peak of parasitaemia 8 days post infection. Protein levels of cytochrome P450 enzymes in the Cyp 2b, 2c, 2d, 2e, 3a and 4a subfamilies were also down-regulated. Several distinct groups differing in their temporal patterns of regulation were identified. The cassette dosing study revealed that at the peak of parasitaemia, the clearances of caffeine, bupropion, tolbutamide and midazolam were markedly reduced by 60-70%. CONCLUSIONS: These findings in a model of uncomplicated human malaria suggest that changes in drug clearance in this condition may be of sufficient magnitude to cause significant alterations in exposure and response of anti-malarial drugs and co-medications.


Assuntos
Antimaláricos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo , Fígado/enzimologia , Malária/parasitologia , Plasmodium chabaudi/fisiologia , Proteínas de Fase Aguda/metabolismo , Animais , Citocinas/metabolismo , Eritrócitos/parasitologia , Feminino , Inativação Metabólica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
10.
Free Radic Biol Med ; 121: 149-156, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29715548

RESUMO

Nitric oxide (NO) is an essential signaling molecule in the body, regulating numerous biological processes. Beside its physiological roles, NO affects drug metabolism by modulating the activity and/or expression of cytochrome P450 enzymes. Previously, our lab showed that NO generation caused by inflammatory stimuli results in CYP2B6 degradation via the ubiquitin-proteasome pathway. In the current study, we tested the NO-mediated regulation of CYP2J2 that metabolizes arachidonic acids to bioactive epoxyeicosatrienoic acids, as well as therapeutic drugs such as astemizole and ebastine. To investigate the effects of NO on CYP2J2 expression and activity, Huh7 cells stably transduced with CYP2J2 with a C-terminal V5 tag were treated with dipropylenetriamine-NONOate (DPTA), a NO donor. The level of CYP2J2 proteins were decreased in a time- and concentration-dependent manner, and the activity was also rapidly inhibited. However, mRNA expression was not altered and the protein synthesis inhibitor cycloheximide did not attenuate DPTA-mediated downregulation of CYP2J2. Removal of DPTA from the culture media quickly restored the activity of remaining CYP2J2, and no further CYP2J2 degradation occurred. To determine the mechanism of CYP2J2 down-regulation by NO, cells were treated with DPTA in the presence or absence of protease inhibitors including proteasomal, lysosomal and calpain inhibitors. Remarkably, the down-regulation of CYP2J2 by NO was attenuated by calpeptin, a calpain inhibitor. However, other calpain inhibitors or calcium chelator show no inhibitory effects on the degradation. The proteasome inhibitor bortezomib showed small but significant restoration of CYP2J2 levels although stimulated ubiquitination of CYP2J2 was not detected. In conclusion, these data suggest that NO regulates CYP2J2 posttranslationally and NO-evoked CYP2J2 degradation undergoes ubiquitin-independent proteasomal degradation pathway unlike CYP2B6.


Assuntos
Carcinoma Hepatocelular/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica , Neoplasias Hepáticas/patologia , Óxido Nítrico/farmacologia , Processamento de Proteína Pós-Traducional , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Regulação para Baixo , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Doadores de Óxido Nítrico/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Biochem J ; 474(19): 3241-3252, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28830911

RESUMO

Nitric oxide (NO) is known to down-regulate drug-metabolizing cytochrome P450 enzymes in an enzyme-selective manner. Ubiquitin-proteasome-dependent and -independent pathways have been reported. Here, we studied the regulation of expression of human CYP51A1, the lanosterol 14α-demethylase required for synthesis of cholesterol and other sterols in mammals, which is found in every kingdom of life. In Huh7 human hepatoma cells, treatment with NO donors caused rapid post-translational down-regulation of CYP51A1 protein. Human NO synthase (NOS)-dependent down-regulation was also observed in cultured human hepatocytes treated with a cytokine mixture and in Huh7 cells expressing human NOS2 under control of a doxycycline-regulated promoter. This down-regulation was partially attenuated by proteasome inhibitors, but only trace levels of ubiquitination could be found. Further studies with inhibitors of other proteolytic pathways suggest a possible role for calpains, especially when the proteasome is inhibited. NO donors also down-regulated CYP51A1 mRNA in Huh7 cells, but to a lesser degree, than the down-regulation of the protein.


Assuntos
Sequência Conservada , Lanosterol/metabolismo , Óxido Nítrico/farmacologia , Proteólise/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Calpaína/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Doadores de Óxido Nítrico/farmacologia , Inibidores de Proteassoma/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esterol 14-Desmetilase/genética , Ubiquitinação/efeitos dos fármacos
12.
Free Radic Biol Med ; 108: 478-486, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28427998

RESUMO

We showed previously that rat cytochrome P450 CYP2B1 undergoes NO-dependent proteasomal degradation in response to inflammatory stimuli, and that the related human enzyme CYP2B6 is also down-regulated by NO in primary human hepatocytes. To investigate the mechanism of CYP2B6 down-regulation, we made several cell lines (HeLa and HuH7 cells) in which native CYP2B6 or CYP2B6 with a C-terminal V5 tag (CYP2B6V5) are expressed from a lentiviral vector with a cytomegalovirus promoter. Native CYP2B6 protein was rapidly down-regulated in HeLa cells within 3h of treatment with the NO donor (Z)-1-[2-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, while its mRNA level was not down-regulated. Treatment of the cells with the NO donor (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2-diolate also resulted in rapid down-regulation of CYP2B6 activity, measured as the formation of 7-hydroxy-4-trifluoromethylcoumarin, as well as 2B6 protein in the CYP2B6 HeLa cell line. CYP2B6V5 was also down-regulated by NO donors in HuH7 cells. Down-regulation was observed in the presence of cycloheximide, demonstrating that this occurs via a post-translational mechanism. We generated a HeLa cell line expressing both CYP2B6V5 and human nitric oxide synthase 2 (NOS2), the latter under positive control by tetracycline. The cellular NO produced by doxycycline treatment also effectively down-regulated CYP2B6 protein, which was blocked by the co-treatment with the NOS2 competitive inhibitor L-NG-nitroarginine methyl ester (L-NAME). We next investigated the proteolytic enzymes responsible for NO-dependent CYP2B6 degradation. Neither calpain inhibitors (N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, carbobenzoxy-valinyl-phenylalaninal), nor lysosomal protease inhibitors (3-methyladenine and chloroquine) inhibited the NO dependent CYP2B6V5 down-regulation. The proteasome inhibitors MG132 and bortezomib attenuated, but did not completely block the NO-induced down-regulation in the HuH7 cell line. However, when cells were co-treated with NO donor and proteasome inhibitors, high molecular mass species could be detected on native CYP2B6 as well as CYP2B6V5 Western blots. Further investigation demonstrated that CYP2B6 protein was polyubiquitinated and this was dramatically enhanced by co-treatment with NO donor and bortezomib. Taken together, our data demonstrate that CYP2B6 is down-regulated in an NO-dependent manner via ubiquitination and proteasomal degradation.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Hepatócitos/fisiologia , Óxido Nítrico/metabolismo , Proteólise/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Bortezomib/farmacologia , Cumarínicos/metabolismo , Citocromo P-450 CYP2B6/genética , Regulação para Baixo , Células HeLa , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Ubiquitinação
13.
Drug Metab Dispos ; 42(1): 134-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163175

RESUMO

Inflammation and infection downregulate the activity and expression of cytochrome P450s (P450s) and other drug metabolizing enzymes (DMEs) involved in hepatic drug clearance. Schistosoma mansoni infection was reported to cause a downregulation of hepatic P450-dependent activities in mouse liver, but little is known about the specific enzymes affected or whether phase II DMEs are also affected. Here we describe the effect of murine schistosomiasis on the expression of hepatic P450s, NADPH-cytochrome P450 reductase (Cpr), phase II drug metabolizing enzymes, and nuclear receptors at 30 and 45 days postinfection (dpi). Although the hepatic expression of some of these genes was altered at 30 dpi, we observed substantial changes in the expression of the majority of P450 mRNAs and proteins measured, Cpr protein, as well as many of the UDP-glucuronosyltransferases and sulfotransferases at 45 dpi. S. mansoni infection also altered nuclear receptor expression, inducing mRNA levels at 30 dpi and depressing levels at 45 dpi. S. mansoni evoked a T helper 2 (Th2) inflammatory response at 45 dpi, as indicated by the induction of hepatic Th2 cytokine mRNAs [interleukins 4, 5, and 13], whereas the hepatic proinflammatory response was relatively weak. Thus, chronic schistosomiasis markedly and selectively alters the expression of multiple DMEs, which may be associated with Th2 cytokine release. This would represent a novel mechanism of DME regulation in disease states. These findings have important implications for drug testing in infected mice, whereas the relevance to humans with schistosomiasis needs to be determined.


Assuntos
Regulação para Baixo/genética , Fígado/enzimologia , Fígado/metabolismo , Desintoxicação Metabólica Fase II/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esquistossomose mansoni/enzimologia , Células Th2/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Esquistossomose/enzimologia , Esquistossomose/genética , Esquistossomose/metabolismo , Esquistossomose mansoni/genética , Esquistossomose mansoni/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
14.
J Pharmacol Exp Ther ; 348(1): 141-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144795

RESUMO

CYP2C22 was recently described as a retinoic acid-metabolizing cytochrome P450 enzyme whose transcription is induced by all-trans-retinoic acid (atRA) in hepatoma cells (Qian L, Zolfaghari R, and Ross AC (2010) J Lipid Res 51:1781-1792). We identified CYP2C22 as a putative nitric oxide (NO)-regulated protein in a proteomic screen and raised specific polyclonal antibodies to CYP2C22 to study its protein expression. We found that CYP2C22 is a liver-specific protein that was not significantly induced by activators of the pregnane X receptor, constitutive androstane receptor, or peroxisome proliferator-activated receptor-α, but was downregulated to <25% of control by the aryl hydrocarbon receptor agonist ß-naphthoflavone in cultured rat hepatocytes. CYP2C22 protein and its mRNA both were induced by atRA in hepatocytes, with EC50 of 100-300 nM, whereas the maximal extent of mRNA induction was twice that of the protein. CYP2C22 protein, but not its mRNA, was rapidly downregulated in hepatocytes by interleukin-1 (IL-1) or NO-donating compounds, and the downregulation by IL-1 was blocked by inhibition of NO synthases. The NO donor (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2-diolate reduced the half-life of CYP2C22 from 8.7 to 3.4 hours in the presence of cycloheximide, demonstrating that NO-dependent downregulation is due to stimulated proteolysis. No intermediate degradation products were detected. However, this degradation was insensitive to inhibitors of calpains or the canonical proteasomal or lysosomal pathways, indicating that NO-dependent degradation of CYP2C22 proceeds via a novel pathway.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Regulação para Baixo/fisiologia , Hepatócitos/enzimologia , Interleucina-1beta/fisiologia , Óxido Nítrico/fisiologia , Tretinoína/metabolismo , Sequência de Aminoácidos , Animais , Sistema Enzimático do Citocromo P-450/genética , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Doadores de Óxido Nítrico/farmacologia , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/fisiologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
15.
Biochem J ; 445(3): 377-82, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22612225

RESUMO

CYP2B proteins in rat hepatocytes undergo NO-dependent proteolytic degradation, but the mechanisms and the reasons for the specificity towards only certain P450 (cytochrome P450) enzymes are yet unknown. In the present study we found that down-regulation of CYP2B proteins by the NO donor NOC-18 is accelerated by pretreatment of the hepatocytes with IL-1 (interleukin-1ß) in the presence of an NO synthase inhibitor, suggesting that an NO-independent action of IL-1 contributes to the lability of CYP2B proteins. The immunoproteasome subunit LMP2 (large multifunctional peptidase 2) was significantly expressed in hepatocytes under basal conditions, and IL-1 induced LMP2 within 6-12 h of treatment. CYP2B protein degradation in response to IL-1 was attenuated by the selective LMP2 inhibitor UK-101, but not by the LMP7 inhibitor IPSI. The results show that LMP2 contributes to the NO-dependent degradation of CYP2B proteins, and suggest that induction of LMP2 may be involved in the potentiation of this degradation by IL-1.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Cisteína Endopeptidases/metabolismo , Animais , Citocromo P-450 CYP2B1/metabolismo , Genes Supressores de Tumor , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Técnicas In Vitro , Interleucina-1/farmacologia , Cinética , Masculino , Redes e Vias Metabólicas , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ratos , Ratos Endogâmicos F344 , Esteroide Hidroxilases/metabolismo
16.
Biochem Pharmacol ; 82(3): 312-21, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21570957

RESUMO

Hepatic cytochrome P450 (P450) gene and protein expression are modulated during inflammation and infection. Oral infection of C57BL/6 mice with Citrobacter rodentium produces mild clinical symptoms while selectively regulating hepatic P450 expression and elevating levels of proinflammatory cytokines. Here, we explored the role of cytokines in the regulation of hepatic P450 expression by orally infecting tumor necrosis factor-α (TNFα) receptor 1 null mice (TNFR1-/-), interleukin-1 (IL1) receptor null mice (IL1R1-/-), and Kupffer cell depleted mice with C. rodentium. CYP4A mRNA and protein levels and flavin monooxygenase (FMO)3 mRNA expression levels were down-regulated, while CYP2D9 and CYP4F18 mRNAs remained elevated during infection in wild-type, receptor knockout, and Kupffer cell depleted mice. CYPs 3A11 and 3A25 mRNA levels were down-regulated during infection in wild-type mice but not in TNFR1-/- mice. Consistent with this observation, CYPs 3A11 and 3A25 were potently down-regulated in mouse hepatocytes treated with TNFα. Oral infection of IL1R1-/- mice and studies with mouse hepatocytes indicated that IL1 does not directly regulate CYP3A11 or CYP3A25 expression. Uninfected mice injected with clodronate liposomes had a significantly reduced number of Kupffer cells in their livers. Infection increased the Kupffer cell count, which was attenuated by clodronate treatment. The P450 mRNA and cytokine levels in infected Kupffer cell depleted mice were comparable to those in infected mice receiving no clodronate. The results indicate that TNFα is involved in the regulation of CYPs 3A11 and 3A25, but IL1ß and Kupffer cells may not be relevant to hepatic P450 regulation in oral C. rodentium infection.


Assuntos
Citrobacter rodentium/fisiologia , Citocromo P-450 CYP3A/metabolismo , Interleucina-1/metabolismo , Células de Kupffer/fisiologia , Proteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Citocromo P-450 CYP3A/genética , Regulação para Baixo , Infecções por Enterobacteriaceae/metabolismo , Enteropatias/metabolismo , Enteropatias/microbiologia , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/metabolismo , Fator de Necrose Tumoral alfa/genética
17.
Drug Metab Dispos ; 38(12): 2166-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837660

RESUMO

Proteasome inhibitors are important tools for studying the roles of the proteasome in cellular processes. In this study, we observed that the proteasome inhibitors N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132), epoxomicin, and lactacystin were ineffective and bortezomib was completely effective in inhibiting cytokine-stimulated nitric oxide production in primary cultures of human hepatocytes that had been treated with the cytochrome P450 inducer phenobarbital. The inefficacy of MG132 was due to its metabolism by CYP3A enzymes, as deduced from its rapid, ketoconazole-sensitive clearance by pooled human liver microsomes and cultured hepatocytes. The efficacy of MG132 was increased by inclusion of ketoconazole in the hepatocyte incubations and decreased by prior treatment of the cultures with the CYP3A inducers phenobarbital or rifampicin. Epoxomicin was also rapidly metabolized by CYP3A, whereas bortezomib and lactacystin were much more stable metabolically in human liver microsomes or hepatocyte cultures. Thus, bortezomib is a better choice than MG132, epoxomicin, or lactacystin in cells with high activities of CYP3A enzymes. The reason for the lack of efficacy of lactacystin in human hepatocytes has yet to be determined, but it too should not be used for studies of proteasome function in human hepatocytes.


Assuntos
Hepatócitos/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Adolescente , Adulto , Células Cultivadas , Inibidores do Citocromo P-450 CYP3A , Feminino , Humanos , Lactente , Cetoconazol/farmacologia , Leupeptinas/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/biossíntese , Fenobarbital/farmacologia , Inibidores de Proteases/metabolismo , Rifampina/farmacologia
18.
J Pharmacol Exp Ther ; 335(2): 480-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719939

RESUMO

After infection with Citrobacter rodentium, murine hepatic cytochrome P450 (P450) mRNAs are selectively regulated. Several serum proinflammatory cytokines are elevated, the most abundant being interleukin-6 (IL6). To elucidate the role of cytokines in the regulation of P450s during infection, we orally infected wild-type, IL6(-/-), or interferon-γ(-/-) [IFNγ(-/-)] female C57BL/6J mice with C. rodentium and analyzed hepatic P450 expression 7 days later. The majority of P450 mRNAs were equally affected by infection in each genotype, indicating that IL6 and IFNγ are not the primary mediators of P450 down-regulation in this disease model. The down-regulation of CYP3A11 and CYP3A13 and induction of CYP2D9 mRNAs were attenuated in the IL6(-/-) mice, suggesting a role of IL6 in the regulation of only these P450s. Similar evidence implicated IFNγ in the regulation of CYP2D9, CYP2D22, CYP3A11, CYP3A25, and CYP4F18 mRNAs in C. rodentium infection and CYP2B9, CYP2D22, and CYP2E1 in the bacterial lipopolysaccharide model of inflammation. This is the first indication of an in vivo role for IFNγ in hepatic P450 regulation in disease states. The deficiency of IL6 or IFNγ affected serum levels of the other cytokines. Moreover, experiments in cultured hepatocytes demonstrated that tumor necrosis factor α (TNFα) is the most potent and efficacious of the cytokines tested in the regulation of murine P450 expression. It is therefore possible that part of the IFNγ(-/-) and IL6(-/-) phenotypes could be attributed to the reduced levels of TNFα and part of the IFNγ(-/-) phenotype could be caused by reduced levels of IL6.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/biossíntese , Infecções por Enterobacteriaceae/enzimologia , Interferon gama/deficiência , Interleucina-6/deficiência , Fígado/enzimologia , Animais , Células Cultivadas , Colo/enzimologia , Colo/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Feminino , Hepatócitos/enzimologia , Immunoblotting , Interferon gama/genética , Interleucina-6/genética , Fígado/microbiologia , Camundongos , Camundongos Knockout , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/microbiologia , Peroxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Drug Metab Dispos ; 37(4): 865-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19171675

RESUMO

Whereas many cytochrome P450 enzymes are transcriptionally suppressed by inflammatory stimuli, down-regulation of CYP2B protein by the inflammatory cytokine interleukin (IL)-1beta is nitric oxide (NO)-dependent and occurs via polyubiquitination and proteasomal degradation. Here, we used iTRAQ proteomic analysis to search for other proteins that are potentially down-regulated by cellular NO in cultured rat hepatocytes, and we identified CYP3A1 as one such protein. Therefore, we examined whether CYP3A proteins, like CYP2B, undergo NO- and proteasome-dependent degradation in response to cytokine treatment of rat hepatocytes. In cultured rat hepatocytes treated with phenobarbital, IL-1beta stimulation failed to down-regulate CYP3A1 mRNA within 24 h of treatment, whereas CYP3A protein was down-regulated to 40% of control within 6 h, showing the post-transcriptional down-regulation of CYP3A1 protein. The down-regulation of CYP3A after 9 h of stimulation by IL-1beta was attenuated by inhibitors of NO synthase (NOS) and of the proteasome, showing NO- and proteasome-dependent down-regulation at earlier time points. However, the down-regulation of CYP3A evoked by IL-1beta measured 24 h after stimulation was not affected by the inhibition of NOS or by proteasomal inhibitors, showing that CYP3A1 down-regulation at later time points is NO- and proteasome-independent. IL-6, which did not evoke NO production nor affect CYP3A1 mRNA within 24 h, produced a delayed proteasome-independent down-regulation as well. Taken together, these observations show a novel dual mode of post-transcriptional CYP3A down-regulation by cytokines: NO- and proteasome-dependent at earlier time points and NO- and proteasome-independent at later times.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Citocinas/metabolismo , Hepatócitos/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Citocromo P-450 CYP3A/genética , Primers do DNA , Regulação para Baixo , Masculino , Óxido Nítrico/metabolismo , Fenobarbital/farmacologia , Proteômica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Free Radic Biol Med ; 44(6): 1161-8, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18206661

RESUMO

The purpose of this study was to determine the role of nitric oxide (NO) in the downregulation of human cytochrome P450 (CYP) enzymes and mRNAs by an inflammatory stimulus in cultured human hepatocytes. We focused on CYP2B6 because previous studies showed that rat CYP2B proteins undergo an NO-dependent degradation in response to inflammatory stimuli. To ensure high-level expression of CYP2B6, the inducer phenytoin was present at all times. Stimulation of cells with a mixture of tumor necrosis factor-alpha, interleukin-1, and interferon-gamma (ILmix) downregulated CYP2B6 mRNA and protein to 9 and 19% of control levels. The NO donor NOC-18 downregulated CYP2B6 protein to 30% of control, with only a small effect on CYP2B6 mRNA. Nitric oxide synthase inhibitors attenuated the downregulation of CYP2B6 protein but not mRNA by ILmix. These findings demonstrate that the posttranscriptional NO-dependent downregulation of CYP2B enzymes, observed previously in rat hepatocytes, is conserved in human CYP2B6. This mechanism is specific for CYP2B6 among the enzymes tested. No evidence was found for regulation of CYP2E1 mRNA or protein by NO. NOC-18 treatment downregulated CYP3A4 mRNA to 50% of control. However, NOS inhibitors failed to block the effects of ILmix on CYP3A4 expression.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Adolescente , Adulto , Hidrocarboneto de Aril Hidroxilases/efeitos dos fármacos , Western Blotting , Células Cultivadas , Criança , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2E1/efeitos dos fármacos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Feminino , Expressão Gênica , Hepatócitos/efeitos dos fármacos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Oxirredutases N-Desmetilantes/efeitos dos fármacos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA