Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38686456

RESUMO

Although a demineralized bone matrix (DBM) is often used as an alternative to an autologous bone graft, its clinical application is still hampered by easy dispersion of DBM particles and insufficient osteoinductivity in the defect site. Herein, we designed a self-healing hydrogel for DBM that can rapidly restore its structural integrity after damage based on amino-rich black phosphorus (BP) nanosheets and aldehyde-functionalized hyaluronic acid (AHA). Given the increased expression of bone morphogenetic protein (BMP) antagonists by DBM stimulation, the osteogenic potency of DBM in the hydrogel carrier was further enhanced by abrogating the BMP antagonism. The BP/AHA hydrogel provided dynamic polymer-nanosheet networks that combine injectability, modability, and physical stability with high DBM loading, where the BP nanosheets served as osteogenic cross-linkers to promote biomineralization and deliver siRNA to suppress undesirable expression of BMP antagonist noggin by DBM. As a result, the BP/AHA hydrogel integrated with DBM and noggin-targeting siRNA synergistically promoted osteogenic differentiation of mesenchymal stem cells by enhancing BMP/Smad signaling. This work demonstrates a promising strategy to improve the efficacy of bone regeneration using bone graft.

2.
Adv Healthc Mater ; 13(10): e2303592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275216

RESUMO

Demineralized bone matrix (DBM) has been widely used as an allogeneic alternative to autologous bone graft for bone repair. However, more extensive use of DBM is limited due to its particulate nature after demineralization and rapid particle dispersion following irrigation, resulting in unpredictable osteoinductivity. Here, a new design of injectable hydrogel carriers for DBM that combine self-healing ability and osteogenic properties based on the self-assembly of guanidinylated hyaluronic acid and silica-rich nanoclays is reported. The nanoclays serve as reversible linkages to form a dynamic hydrogel network with the guanidine moieties on the polymer chains. Gelation kinetics and mechanical properties can be controlled by altering nanoclay content in the hydrogel. The resulting hydrogel exerts self-healing ability due to its dynamic crosslinks and well retains its overall performance with high DBM loading. The hydrogel exhibits great cytocompatibility and osteogenic effects mediated by the nanoclays. In vivo delivery of DBM using the nanocomposite hydrogel further demonstrates robust bone regeneration in a mouse calvarial defect model in comparison to DBM delivered with aqueous HA. This work suggests a promising hydrogel platform for many applications including therapeutic delivery and tissue engineering.


Assuntos
Matriz Óssea , Osso e Ossos , Camundongos , Animais , Nanogéis , Hidrogéis/farmacologia , Osteogênese
3.
Gels ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38131937

RESUMO

Starch-based hydrogels have gained significant attention in biomedical applications as a type of drug delivery system due to their biocompatibility, biodegradability, and ability to absorb and release drugs. Starch-based hydrogels can serve as effective carriers for pharmaceutical compounds such as drugs and proteins to develop drug-loaded hydrogel systems, providing controlled release over an extended period. The porous structure of a hydrogel allows for the diffusion of drugs, ensuring sustained and localized delivery to the target site. Moreover, starch-based hydrogels have been used as a powerful option in various biomedical fields, including cancer and infectious disease treatment. In addition, starch-based hydrogels have shown promise in tissue engineering applications since hydrogels can be used as scaffolds or matrices to support cell growth and tissue regeneration. Depending on techniques such as chemical crosslinking or physical gelation, it can create a three-dimensional network structure that tunes its mechanical properties and mimics the extracellular matrix. Starch-based hydrogels can also provide a supportive environment for cell attachment, proliferation, and differentiation to promote specific cellular responses and tissue regeneration processes with the loading of growth factors, cytokines, or other bioactive molecules. In this review, starch-based hydrogels as a versatile platform for various biomedical applications are discussed.

4.
Mol Pharm ; 20(11): 5278-5311, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37867343

RESUMO

Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Engenharia Tecidual , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
5.
Biomaterials ; 302: 122335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748419

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays a crucial role in bone development and regeneration. While BMP-2 is widely used as an alternative to autograft, its clinical application has raised concerns about adverse side effects and deteriorated bone quality. Therefore, there is a need to develop more sophisticated approaches to regulate BMP signaling and promote bone regeneration. Here, we present a novel complementary strategy that targets both BMP antagonist noggin and agonist Trb3 to enhance bone defect repair without the application of exogenous BMP-2. In vitro studies showed that overexpression of Trb3 with simultaneous noggin suppression significantly promotes osteogenic differentiation of mesenchymal stem cells. This was accompanied by increased BMP/Smad signaling. We also developed sterosome nanocarriers, a non-phospholipid liposomal system, to achieve non-viral mediated noggin suppression and Trb3 overexpression. The gene-loaded sterosomes were integrated onto an apatite-coated polymer scaffold for in vivo calvarial defect implantation, resulting in robust bone healing compared to BMP-2 treatments. Our work provides a promising alternative for high-quality bone formation by regulating expression of BMP agonists and antagonists.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Regeneração Óssea , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Transdução de Sinais
6.
Gels ; 9(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504467

RESUMO

Hydrogel-based bone tissue engineering is a potential strategy for treating bone abnormalities and fractures. Hyaluronic acid (HA) is a natural polymer that is widely distributed in the human body and plays a significant role in numerous physiological processes such as cell migration, tissue hydration, and wound healing. Hydrogels based on HA and its derivatives have gained popularity as potential treatments for bone-related diseases. HA-based hydrogels have been extensively studied for their ability to mimic the natural extracellular matrix of bone tissue and provide a suitable microenvironment for cell support and tissue regeneration. The physical and chemical properties of HA can be modified to improve its mechanical strength, biocompatibility, and osteogenic potential. Moreover, HA-based hydrogels combined with other biomaterials in the presence or absence of bioactive agents have been investigated as a means of improving the mechanical properties and bioactivity of the hydrogel scaffold. Therefore, HA-based hydrogels have shown great promise in bone tissue engineering due to their biocompatibility, osteogenic activity, and ability to mimic the natural extracellular matrix of bone tissue. Overall, this review provides a comprehensive overview of the current state of the art in HA-based hydrogels for bone tissue engineering, highlighting the key advances, challenges, and future directions in this rapidly evolving field.

7.
Gels ; 9(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975632

RESUMO

(1) Background: Infections of pathogenic microorganisms can be life-threatening due to delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The excessive presence of reactive oxygen species in damaged and infected tissues causes a negative inflammatory response, resulting in failed healing. Thus, the development of hydrogels with antibacterial and antioxidant abilities for the treatment of infectious tissues is in high demand. (2) Methods: We herein describe the development of green-synthesized silver-composited polydopamine nanoparticles (AgNPs), which are fabricated by the self-assembly of dopamine as a reducing and antioxidant agent in the presence of silver ions. (3) Results: The facile and green-synthesized AgNPs have a nanoscale diameter with mostly spherical shapes, with various shapes coexisting. The particles are stable in an aqueous solution for up to 4 weeks. In addition, remarkable antibacterial activity against Gram-positive and -negative bacterial strains and antioxidant capabilities were evaluated by in vitro assays. When incorporated into biomaterial hydrogels at concentrations above 2 mg L-1, the hydrogels produced powerful antibacterial effects. (4) Conclusions: This study describes a biocompatible hydrogel with antibacterial and antioxidant activities from the introduction of facile and green-synthesized AgNPs as a safer tool for the treatment of damaged tissues.

8.
Nano Lett ; 23(4): 1202-1210, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36762874

RESUMO

Extracellular vesicles have received a great interest as safe biocarriers in biomedical engineering. There is a need to develop more efficient delivery strategies to improve localized therapeutic efficacy and minimize off-target adverse effects. Here, exosome mimetics (EMs) are reported for bone targeting involving the introduction of hydroxyapatite-binding moieties through bioorthogonal functionalization. Bone-binding ability of the engineered EMs is verified with hydroxyapatite-coated scaffolds and an ex vivo bone-binding assay. The EM-bound construct provided a biocompatible substrate for cell adhesion, proliferation, and osteogenic differentiation. Particularly, the incorporation of Smoothened agonist (SAG) into EMs greatly increased the osteogenic capacity through the activation of hedgehog signaling. Furthermore, the scaffold integrated with EM/SAG significantly improved in vivo reossification. Lastly, biodistribution studies confirmed the accumulation of systemically administered EMs in bone tissue. This facile engineering strategy could be a versatile tool to promote bone regeneration, offering a promising nanomedicine approach to the sophisticated treatment of bone diseases.


Assuntos
Exossomos , Engenharia Tecidual , Osteogênese , Alicerces Teciduais , Distribuição Tecidual , Proteínas Hedgehog , Osso e Ossos , Diferenciação Celular , Hidroxiapatitas
9.
Biomater Res ; 26(1): 23, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690811

RESUMO

BACKGROUND: Layered double hydroxides (LDHs) are one type of 2-dimensional material with unique structure and strongly positive surface charge. Particularly, LDHs can be exfoliated by mono-layered double hydroxides (MLHs) as a single layer, showing an increased surface area. Therefore, there is a large focus on LDHs for drug delivery applications. Furthermore, most photosensitizers are hydrophobic that they cannot be soluble in aqueous solvents. Herein, we designed a simple way to solubilize hydrophobic photosensitizers by MLH with electrostatic interactions for anticancer photodynamic therapy (PDT), which has tremendous therapeutic advantages. The photosensitizer solubilized via loading on the MLH exhibited fluorescence and singlet oxygen-generation activities in aqueous solvent without chemical modification, resulting in photo-mediated anticancer treatment. METHODS: Negatively charged hydrophobic photosensitizers, chlorin e6 (Ce6) were solubilized by loading on the MLHs through the electrostatic interaction between positively charged MLHs. MLH/Ce6 complexes evaluated for physico-chemical characterization, pH-sensitive release property, in vitro photocytotoxicity, and in vivo tumor ablation. RESULTS: The photosensitizer solubilized via MLH exhibited fluorescence intensity and singlet-oxygen generation activities in aqueous solvent without chemical modification, resulting photocytotoxicity in cancer cells. The encapsulation efficiency of Ce6 increased to 21.2% through MLH compared to 0.6% when using LDH. In tumor-bearing mice, PDT with solubilized MLH/Ce6 indicated a tumor-suppressing effect approximately 3.4-fold greater than that obtained when Ce6 was injected alone. CONCLUSIONS: This study provided the solubilized Ce6 by the MLH in a simple way without chemical modification. We demonstrated that MLH/Ce6 complexes would have a great potential for anticancer PDT.

10.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693665

RESUMO

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Assuntos
Hemaglutininas/química , Vacinas contra Influenza/administração & dosagem , Luz , Nanopartículas/química , Infecções por Orthomyxoviridae/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração por Inalação , Animais , Antígenos/administração & dosagem , Antígenos/química , Antígenos/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Hemaglutininas/administração & dosagem , Hemaglutininas/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fármacos Fotossensibilizantes/química , Polímeros/química
11.
ACS Appl Bio Mater ; 4(6): 5189-5200, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34661086

RESUMO

Hydrogels have been widely used in bone tissue engineering due to their tunable characteristics that allow facile modifications with various biochemical properties to support cell growth and guide proper cell functions. Herein, we report a design of hydrogel-siRNA conjugate that facilitates osteogenesis via gene silencing and activation of bone morphogenetic protein (BMP) signaling. A sulfonate hydrogel is prepared by modifying chitosan with sulfoacetic acid to mimic a natural sulfated polysaccharide and to provide a hydrogel surface that enables BMP binding. Then, siRNA targeting noggin, an endogenous extracellular antagonist of BMP signaling, is covalently conjugated to the sulfonate hydrogel by visible blue light crosslinking. The sulfonate hydrogel-siRNA conjugate is efficient to bind BMPs and also successfully prolongs the release of siRNA for sustained noggin suppression, thereby resulting in significantly increased osteogenic differentiation. Lastly, demineralized bone matrix (DBM) is incorporated into the sulfonate hydrogel-siRNA conjugate, wherein the DBM incorporation induces noggin expression via a negative feedback mechanism that regulates BMP signaling in DBM. However, simultaneous delivery of siRNA downregulates noggin thus facilitating endogenous BMP activity and enhancing the osteogenic efficacy of DBM. These findings support a promising hydrogel RNA silencing platform for bone tissue engineering applications.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Proteínas Morfogenéticas Ósseas/genética , Inativação Gênica , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética
12.
Bioengineering (Basel) ; 8(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677210

RESUMO

With population aging and increased life expectancy, an increasing number of people are facing musculoskeletal health problems that necessitate therapeutic intervention at defect sites. Bone tissue engineering (BTE) has become a promising approach for bone graft substitutes as traditional treatments using autografts or allografts involve clinical complications. Significant advancements have been made in developing ideal BTE scaffolds that can integrate bioactive molecules promoting robust bone repair. Herein, we review bioactive scaffolds tuned for local bone regenerative therapy, particularly through integrating synthetic liposomal vesicles or extracellular vesicles to the scaffolds. Liposomes offer an excellent drug delivery system providing sustained release of the loaded bioactive molecules. Extracellular vesicles, with their inherent capacity to carry bioactive molecules, are emerging as an advanced substitute of synthetic nanoparticles and a novel cell-free therapy for bone regeneration. We discuss the recent advance in the use of synthetic liposomes and extracellular vesicles as bioactive materials combined with scaffolds, highlighting major challenges and opportunities for their applications in bone regeneration. We put a particular focus on strategies to integrate vesicles to various biomaterial scaffolds and introduce the latest advances in achieving sustained release of bioactive molecules from the vesicle-loaded scaffolds at the bone defect site.

13.
Mol Pharm ; 18(4): 1677-1689, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760625

RESUMO

Bone repair requires the tightly regulated control of multiple intrinsic and extrinsic cell types and signaling pathways. One of the positive regulatory signaling pathways in membranous and endochondral bone healing is the Hedgehog (Hh) signaling family. Here, a novel therapeutic liposomal delivery vector was developed by self-assembly of an Hh-activating cholesterol analog with an emulsifier, along with the addition of Smoothened agonist (SAG) as a drug cargo, for the enhancement of Hh signaling in bone regeneration. The drug-loaded nanoparticulate agonists of Hh signaling were immobilized onto trabecular bone-mimetic apatite-coated 3D scaffolds using bioinspired polydopamine adhesives to ensure favorable microenvironments for cell growth and local therapeutic delivery. Results showed that SAG-loaded liposomes induced a significant and dose-dependent increase in Hh-mediated osteogenic differentiation, as evidenced by in vitro analysis of bone marrow stromal cells, and in vivo calvarial bone healing, as evidenced using all radiographic parameters and histomorphometric analyses. Moreover, favorable outcomes were achieved in comparison to standards of care, including collagen sponge-delivered rBMP2 or allograft bone. In summary, this study demonstrates using a nanoparticle packaged Hh small molecule as a widely applicable bone graft substitute for robust bone repair.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Cicloexilaminas/farmacologia , Proteínas Hedgehog/metabolismo , Oxisteróis/administração & dosagem , Tiofenos/farmacologia , Alicerces Teciduais/química , Animais , Apatitas/química , Transplante Ósseo , Diferenciação Celular/efeitos dos fármacos , Cicloexilaminas/química , Modelos Animais de Doenças , Feminino , Humanos , Lipossomos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/cirurgia , Tiofenos/química , Microtomografia por Raio-X
14.
Adv Biol (Weinh) ; 5(1): e202000135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33585837

RESUMO

Demineralized bone matrix (DBM), a potential alternative to autologous bone-graft, has been increasingly used for clinical bone repair; however, its application in larger defects isn't successful partly due to the rapid dispersion of DBM particles and relatively lower osteoinductivity. Here, a novel strategy is created to complement the osteoinductivity of DBM by incorporating DBM in biopolymer hydrogel combined with the abrogation of BMP antagonism. Combined treatment of DBM + noggin-suppression displays increased osteogenic potency of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. Injectable chitosan (MeGC)-based hydrogel with heparinization (Hep-MeGC) is further developed to localize and stabilize DBM. Noggin-suppression reveals the significant increase in osteogenesis of hBMSCs in the photopolymerizable Hep-MeGC hydrogels with the encapsulation of DBM. Moreover, the combination of DBM + noggin-suppression in the injectable Hep-MeGC hydrogel displays a robust bone healing in mouse critical-sized calvarial defects in vivo. The mechanistic analysis demonstrates that noggin-suppression increased DBM osteoinductivity by stimulating endogenous BMP/Smad signals. These results have shown promise in DBM's ability as a prominent bone grafting material while being coupled with gene editing mechanism and a localizing three-dimensional scaffold. Together, this approach poses a significant increase in the efficiency of DBM-mediated craniofacial bone repair and dental osteointegration.


Assuntos
Matriz Óssea , Células-Tronco Mesenquimais , Animais , Hidrogéis , Camundongos , Osteogênese , Polímeros
15.
Biomaterials ; 264: 120445, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069136

RESUMO

Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/ß-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.


Assuntos
Células-Tronco Mesenquimais , Adipogenia , Regeneração Óssea , Diferenciação Celular , Linhagem da Célula , Osteogênese
16.
Adv Funct Mater ; 30(43)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33122980

RESUMO

Bone repair is a complex process involving the sophisticated interplay of osteogenic stem cells, extracellular matrix, and osteoinductive factors, and it is affected by bacterial toxins and oxidative stress. Inspired by the nature of plant-derived phytochemicals and inorganic-organic analogues of the bone extracellular matrix, we report herein the facile design of a nanoclay-organic hydrogel bone sealant (NoBS) that integrates multiple physico-chemical cues for bone regeneration into a single system. Assembly of phytochemical-modified organic chitosan and silica-rich inorganic nanoclay serves as highly biocompatible and osteoconductive extracellular matrix mimics. The decorated phytochemical exerts inherent bactericidal and antioxidant activities, and acts as an intermolecular networking precursor for gelation with injectable and self-healing capabilities. Moreover, the NoBS exerts osteoinductive effects mediated by the nanoclay, which regulates the Wnt/ß-catenin pathway, along with the addition of osteoinductive signals, resulting in bone regeneration in a non-healing cranial defect. Engineering of this integrated bone graft substitute with multifunctional properties inspired by natural materials may suggest a promising and effective approach for creating a favorable microenvironment for optimal bone healing.

17.
Adv Funct Mater ; 30(12)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32952492

RESUMO

The hedgehog signaling pathway plays a critical role in bone development and regeneration. Applications of hedgehog morphogens or small molecular agonists are of interest in bone repair but constrained by low stability, high dose requirement, and nonspecific targeting in vivo. Herein, a nanoparticulate agonist as a new type of hedgehog signaling activator is developed for efficacious bone healing. The shell of nanoparticulate agonist consists of palmitic acid and oxysterol, which could modify hedgehog function and bind with the smoothened receptor to positively modulate hedgehog signaling. Meanwhile, the core is assembled with sonic hedgehog gene/polyethyleneimine complex, which could synergistically enhance hedgehog signaling with oxysterol constituents. Moreover, alendronate is introduced into nanoparticulate agonist to bind with hydroxyapatite for potential bone tissue targeting. Lastly, the nanoparticulate agonist surface is decorated with the guanidine group to overcome cell membrane barriers. The created multifunctional nanoparticulate agonist is successfully integrated onto apatite-coated three-dimensional scaffolds and demonstrates greatly improved osteogenesis in vitro and calvarial bone healing. This work suggests a novel biomaterial design to specifically promote hedgehog signaling for the treatment of bone defects.

18.
ACS Appl Bio Mater ; 3(4): 2334-2343, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32954226

RESUMO

Hydrogels with controlled degradation and sustained bactericidal activities are promising biomaterial substrates to repair or regenerate the injured tissue. In this work, we present a unique pair of lysozyme and chitosan as a hydrogel that can promote cell growth and proliferation while concomitantly preventing infection during the gradual process of hydrogel degradation and tissue ingrowth. Lysozyme and chitosan containing cell adhesion motifs are chemically modified with photoreactive methacrylate moieties to obtain a crosslinked hydrogel network by visible light irradiation. The resulting lysozyme-chitosan conjugate successfully modulates the degradation rate of hydrogels while promoting cell adhesion, proliferation, and matrix formation with no cytotoxicity. The hydrogel also exerts an intrinsic antibacterial effect by combining antimicrobial features of chitosan and lysozyme. This work demonstrates an advanced hydrogel platform with dual function of tunable degradation and infection control for tissue engineering and wound healing applications.

19.
ACS Nano ; 14(9): 11973-11984, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32897692

RESUMO

Administration of exosomes is considered an attractive cell-free approach to skeletal repair and pathological disease treatment. However, poor yield for the production technique and unexpected therapeutic efficacy of exosomes have been obstacles to their widespread use in clinical practices. Here, we report an alternative strategy to produce exosome-related vesicles with high yields and improved regenerative capability. An extrusion approach was employed to amass exosome mimetics (EMs) from human mesenchymal stem cells (hMSCs). The collected EMs had a significantly increased proportion of vesicles positive for the exosome-specific CD-63 marker compared with MSC-derived exosomes. EMs were further obtained from genetically modified hMSCs in which expression of noggin, a natural bone morphogenetic protein antagonist, was down-regulated to enhance osteogenic properties of EMs. Moreover, the administration of hMSC-EMs in conjunction with an injectable chitosan hydrogel into mouse nonhealing calvarial defects demonstrated robust bone regeneration. Importantly, mechanistic studies revealed that the enhanced osteogenesis by EMs in which noggin was suppressed was mediated via inhibition of miR-29a. These findings demonstrate the great promise of MSC-mediated EMs and modulation of small RNA signaling for skeletal regeneration and cell-free therapy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Complexo Multienzimático de Ribonucleases do Exossomo , Camundongos , RNA
20.
Sci Adv ; 6(17): eaaz7822, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494652

RESUMO

Biomaterial delivery of bioactive agents and manipulation of stem cell fate are an attractive approach to promote tissue regeneration. Here, smoothened agonist sterosome is developed using small-molecule activators [20S-hydroxycholesterol (OHC) and purmorphamine (PUR)] of the smoothened protein in the hedgehog pathway as carrier and cargo. Sterosome presents inherent osteoinductive property even without drug loading. Sterosome is covalently immobilized onto three-dimensional scaffolds via a bioinspired polydopamine intermediate to fabricate a hybrid scaffold for bone regeneration. Sterosome-immobilized hybrid scaffold not only provides a favorable substrate for cell adhesion and proliferation but also delivers bioactive agents in a sustained and spatially targeted manner. Furthermore, this scaffold significantly improves osteogenic differentiation of bone marrow stem cells through OHC/PUR-mediated synergistic activation of the hedgehog pathway and also enhances bone repair in a mouse calvarial defect model. This system serves as a versatile biomaterial platform for many applications, including therapeutic delivery and endogenous regenerative medicine.


Assuntos
Proteínas Hedgehog , Osteogênese , Animais , Materiais Biocompatíveis , Regeneração Óssea , Diferenciação Celular , Camundongos , Receptor Smoothened , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA