Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 259: 116386, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749285

RESUMO

Faced with the increasing prevalence of chronic kidney disease (CKD), portable monitoring of CKD-related biomarkers such as potassium ion (K+), creatinine (Cre), and lactic acid (Lac) levels in sweat has shown tremendous potential for early diagnosis. However, a rapidly manufacturable portable device integrating multiple CKD-related biomarker sensors for ease of sweat testing use has yet to be reported. Here, a portable electrochemical sensor integrated with multifunctional laser-induced graphene (LIG) circuits and laser-printed nanomaterials based working electrodes fabricated by fully automatic laser manufacturing is proposed for non-invasive human kidney function monitoring. The sensor comprises a two-electrode LIG circuit for K+ sensing, a three-electrode LIG circuit with a Kelvin compensating connection for Cre and Lac sensing, and a printed circuit board based portable electrochemical workstation. The working electrodes containing Cu and Cu2O nanoparticles fabricated by two-step laser printing show good sensitivity and selectivity toward Cre and Lac sensing. The sensor circuits are fabricated by generating a hydrophilic-hydrophobic interface on a patterned LIG through laser. This sensor recruited rapid laser manufacturing and integrated with multifunctional LIG circuits and laser-printed nanomaterials based working electrodes, which is a potential kidney function monitoring solution for healthy people and kidney disease patients.


Assuntos
Técnicas Biossensoriais , Grafite , Lasers , Nanoestruturas , Insuficiência Renal Crônica , Humanos , Grafite/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Insuficiência Renal Crônica/diagnóstico , Rim/química , Creatinina/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Suor/química , Desenho de Equipamento , Ácido Láctico/análise , Eletrodos , Testes de Função Renal/instrumentação , Biomarcadores/análise , Cobre/química
2.
Adv Sci (Weinh) ; : e2402676, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742435

RESUMO

The global water crisis demands immediate attention, and atmospheric water harvesting (AWH) provides a viable alternative. However, studying the real-time subtle relationship between water absorption, diffusion, and internal structure for hygroscopic materials is challenging. Herein, a dynamic visualization technique is proposed that utilizes an in situ electrical impedance tomography (EIT) system and a precise reconstruction algorithm to achieve real-time monitoring of the water sorption process within aerogels from an internal microstructural perspective. These results can be inferred that composites' pore sizes affecting the kinetics of their moisture absorption. In addition, the diffusion path of moisture absorption and the distribution of stored moisture inside aerogels exhibit intrinsic self-selective behavior, where the fiber skeleton of the aerogel plays a crucial role. In summary, this work proposes a generic EIT-based technique for the in situ and dynamic monitoring of the hygroscopic process, pointing to an entirely new approach regarding research on AWH materials.

3.
Small Methods ; 8(3): e2301184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38019189

RESUMO

A portable sweat urea sensing system is a promising solution to satisfy the booming requirement of kidney function tele-monitoring. However, the complicated manufacturing route and the cumbersome electrochemical testing system still need to be improved to develop the urea point-of-care testing (POCT) and tele-monitoring devices. Here, a universal technical route based on a high-throughput automatic laser printing strategy for fabricating the portable integrated urea monitoring system is proposed. This integrated system includes a high-performance laser-printed urea sensing electrode, a planar three-electrode system, and a self-developed wireless mini-electrochemical workstation. A precursor donor layer is activated by laser scribing and in situ transferred into functional nanoparticles for the drop-on-demand printing of the urea sensing electrode. The obtained electrodes show high sensitivity, low detection limit, fast response time, high selectivity, good average recovery, and long-term stability for urea sensing. Additionally, a laser-induced graphene circuit-based miniature planar three-electrode system and a wireless mini-electrochemical workstation are designed for sensing data collection and transmitting, achieving real-time urea POCT and tele-monitoring. This scalable method provides a universal solution for high-throughput and ultra-fast fabrication of urea-sensing electrodes. The portable integrated urea monitoring system is a competitive option to achieve cost-effective POCT and tele-monitoring for kidney function.


Assuntos
Nanopartículas , Ureia , Análise Custo-Benefício , Técnicas Eletroquímicas/métodos , Monitorização Fisiológica
4.
Top Curr Chem (Cham) ; 381(4): 18, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212928

RESUMO

Patterning is crucial for the large-scale application of functional materials. Laser-induced transfer is an emerging patterning method for additively depositing functional materials to the target acceptor. With the rapid development of laser technologies, this laser printing method emerges as a versatile method to deposit functional materials in either liquid or solid format. The emerging applications such as solar interfacial evaporation, solar cells, light-emitting diodes, sensors, high-output synthesis, and other fields are rising fields benefiting from laser-induced transfer. Following a brief introduction to the principles of laser-induced transfer, this review will comprehensively deliberate this novel additive manufacturing method, including preparing the donor layer and the applications, advantages, and limitations of this technique. Finally, perspectives for handling current and future functional materials using laser-induced transfer will also be discussed. Non-experts in laser technologies can also gain insights into this prevailing laser-induced transfer process, which may inspire their future research.


Assuntos
Lasers , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA