Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945953

RESUMO

The asymmetric division of stem cells permits the maintenance of the cell population and differentiation for harmonious progress. Developing mouse incisors allows inspection of the role of the stem cell niche to provide specific insights into essential developmental phases. Microtubule-associated serine/threonine kinase family member 4 (Mast4) knockout (KO) mice showed abnormal incisor development with low hardness, as the size of the apical bud was decreased and preameloblasts were shifted to the apical side, resulting in amelogenesis imperfecta. In addition, Mast4 KO incisors showed abnormal enamel maturation, and stem cell maintenance was inhibited as amelogenesis was accelerated with Wnt signal downregulation. Distal-Less Homeobox 3 (DLX3), a critical factor in tooth amelogenesis, is considered to be responsible for the development of amelogenesis imperfecta in humans. MAST4 directly binds to DLX3 and induces phosphorylation at three residues within the nuclear localization site (NLS) that promotes the nuclear translocation of DLX3. MAST4-mediated phosphorylation of DLX3 ultimately controls the transcription of DLX3 target genes, which are carbonic anhydrase and ion transporter genes involved in the pH regulation process during ameloblast maturation. Taken together, our data reveal a novel role for MAST4 as a critical regulator of the entire amelogenesis process through its control of Wnt signaling and DLX3 transcriptional activity.

2.
Mater Today Bio ; 26: 101050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654935

RESUMO

Periodontal ligament (PDL) cells play a crucial role in maintaining periodontal integrity and function by providing cell sources for ligament regeneration. While biophysical stimulation is known to regulate cell behaviors and functions, its impact on epigenetics of PDL cells has not yet been elucidated. Here, we aimed to investigate the cytoskeletal changes, epigenetic modifications, and lineage commitment of PDL cells following the application of stretch stimuli to PDL. PDL cells were subjected to stretching (0.1 Hz, 10 %). Subsequently, changes in focal adhesion, tubulin, and histone modification were observed. The survival ability in inflammatory conditions was also evaluated. Furthermore, using a rat hypo-occlusion model, we verified whether these phenomena are observed in vivo. Stretched PDL cells showed maximal histone 3 acetylation (H3Ace) at 2 h, aligning perpendicularly to the stretch direction. RNA sequencing revealed stretching altered gene sets related to mechanotransduction, histone modification, reactive oxygen species (ROS) metabolism, and differentiation. We further found that anchorage, cell elongation, and actin/microtubule acetylation were highly upregulated with mechanosensitive chromatin remodelers such as H3Ace and histone H3 trimethyl lysine 9 (H3K9me3) adopting euchromatin status. Inhibitor studies showed mechanotransduction-mediated chromatin modification alters PDL cells behaviors. Stretched PDL cells displayed enhanced survival against bacterial toxin (C12-HSL) or ROS (H2O2) attack. Furthermore, cyclic stretch priming enhanced the osteoclast and osteoblast differentiation potential of PDL cells, as evidenced by upregulation of lineage-specific genes. In vivo, PDL cells from normally loaded teeth displayed an elongated morphology and higher levels of H3Ace compared to PDL cells with hypo-occlusion, where mechanical stimulus is removed. Overall, these data strongly link external physical forces to subsequent mechanotransduction and epigenetic changes, impacting gene expression and multiple cellular behaviors, providing important implications in cell biology and tissue regeneration.

3.
Small ; 20(24): e2306738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161257

RESUMO

Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.


Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Imunoterapia , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Receptores de Hialuronatos/metabolismo , Animais , Humanos , Imunoterapia/métodos , Ácido Hialurônico/química , Linhagem Celular Tumoral , Ligantes , Camundongos , Polietilenoglicóis/química , Neoplasias/terapia , Neoplasias/imunologia
4.
J Adv Res ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37619933

RESUMO

INTRODUCTION: Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies. OBJECTIVES: We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. METHODS: For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. RESULTS: These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. CONCLUSION: Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.

5.
Tissue Eng Regen Med ; 20(5): 767-778, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079199

RESUMO

BACKGROUND: In guided bone regeneration (GBR), there are various problems that occur in the bone defect after the wound healing period. This study aimed to investigate the enhancement of the osteogenic ability of the dual scaffold complex and identify the appropriate concentration of growth factors (GF) for new bone formation based on the novel GBR concept that is applying rapid bone forming GFs to the membrane outside of the bone defect. METHODS: Four bone defects with a diameter of 8 mm were formed in the calvaria of New Zealand white rabbits each to perform GBR. Collagen membrane and biphasic calcium phosphate (BCP) were applied to the bone defects with the four different concetration of BMP-2 or FGF-2. After 2, 4, and 8 weeks of healing, histological, histomorphometric, and immunohistochemical analyses were conducted. RESULTS: In the histological analysis, continuous forms of new bones were observed in the upper part of bone defect in the experimental groups, whereas no continuous forms were observed in the control group. In the histomorphometry, The group to which BMP-2 0.5 mg/ml and FGF-2 1.0 mg/ml was applied showed statistically significantly higher new bone formation. Also, the new bone formation according to the healing period was statistically significantly higher at 8 weeks than at 2, 4 weeks. CONCLUSION: The novel GBR method in which BMP-2, newly proposed in this study, is applied to the membrane is effective for bone regeneration. In addition, the dual scaffold complex is quantitatively and qualitatively advantageous for bone regeneration and bone maintenance over time.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Osteogênese , Animais , Coelhos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regeneração Óssea , Crânio/patologia , Colágeno
6.
Exp Mol Med ; 55(1): 171-182, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631663

RESUMO

Taste receptor cells are taste bud epithelial cells that are dependent upon the innervating nerve for continuous renewal and are maintained by resident tissue stem/progenitor cells. Transection of the innervating nerve causes degeneration of taste buds and taste receptor cells. However, a subset of the taste receptor cells is maintained without nerve contact after glossopharyngeal nerve transection in the circumvallate papilla in adult mice. Here, we revealed that injury caused by glossopharyngeal nerve transection triggers the remaining differentiated K8-positive taste receptor cells to dedifferentiate and acquire transient progenitor cell-like states during regeneration. Dedifferentiated taste receptor cells proliferate, express progenitor cell markers (K14, Sox2, PCNA) and form organoids in vitro. These data indicate that differentiated taste receptor cells can enter the cell cycle, acquire stemness, and participate in taste bud regeneration. We propose that dedifferentiated taste receptor cells in combination with stem/progenitor cells enhance the regeneration of taste buds following nerve injury.


Assuntos
Traumatismos do Nervo Glossofaríngeo , Papilas Gustativas , Camundongos , Animais , Papilas Gustativas/metabolismo , Paladar , Células-Tronco , Células Epiteliais
7.
Cell Prolif ; 56(4): e13390, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36592615

RESUMO

Spermatogonial stem cell (SSC) self-renewal is regulated by reciprocal interactions between Sertoli cells and SSCs in the testis. In a previous study, microtubule-associated serine/threonine kinase 4 (MAST4) has been studied in Sertoli cells as a regulator of SSC self-renewal. The present study focused on the mechanism by which MAST4 in Sertoli cells transmits the signal and regulates SSCs, especially cell cycle regulation. The expression of PLZF, CDK2 and PLZF target genes was examined in WT and Mast4 KO testes by Immunohistochemistry, RT-qPCR and western blot. In addition, IdU and BrdU were injected into WT and Mast4 KO mice and cell cycle of SSCs was analysed. Finally, the testis tissues were cultured in vitro to examine the regulation of cell cycle by MAST4 pathway. Mast4 KO mice showed infertility with Sertoli cell-only syndrome and reduced sperm count. Furthermore, Mast4 deletion led to decreased PLZF expression and cell cycle progression in the testes. MAST4 also induced cyclin-dependent kinase 2 (CDK2) to phosphorylate PLZF and activated PLZF suppressed the transcriptional levels of genes related to cell cycle arrest, leading SSCs to remain stem cell state. MAST4 is essential for maintaining cell cycle in SSCs via the CDK2-PLZF interaction. These results demonstrate the pivotal role of MAST4 regulating cell cycle of SSCs and the significance of spermatogenesis.


Assuntos
Células-Tronco Germinativas Adultas , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/fisiologia , Ciclo Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Masculino
8.
Int J Stem Cells ; 15(4): 415-421, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310025

RESUMO

Cancer initiation and progression are profoundly along with the crosstalk between cancer cells and the surrounding stroma. Accumulating evidence has shown that the therapy targeting the extracellular matrix (ECM) would regress tumor growth and invasion in the most common carcinomas. However, it remains largely unexplored in several rare tumors like odontogenic tumors. Ameloblastoma (AM) is the representative odontogenic epithelial tumor in the jawbone, and it usually infiltrates into adjacent bone marrow and has unlimited growth capacity and a high potential for recurrence. This study aims to investigate the role of collagen-rich ECM during the invasion of AM. Transcriptomic analysis revealed that ECM- and epithelial-to-mesenchymal transition (EMT)-related genes were up-regulated in AM compared to ameloblastoma cell line, AM-1. Tumoroid forming analysis showed that Collagen-rich ECM is indispensable for AM progression, especially for aggressive growth patterns and collective invasion.

9.
Cell Biosci ; 12(1): 145, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057617

RESUMO

BACKGROUND: Transcriptome analysis has been known as a functional tool for cancer research recently. Mounting evidence indicated that calcium signaling plays several key roles in cancer progression. Despite numerous studies examining calcium signaling in cancer, calcium signaling studies in ameloblastoma are limited. RESULTS: In the present study, comparative transcriptome profiling of two representative odontogenic lesions, ameloblastoma and odontogenic keratocyst, revealed that Cav1.2 (CACNA1C, an L-type voltage-gated calcium channel) is strongly enriched in ameloblastoma. It was confirmed that the Ca2+ influx in ameloblastoma cells is mainly mediated by Cav1.2 through L-type voltage-gated calcium channel agonist and blocking reagent treatment. Overexpression and knockdown of Cav1.2 showed that Cav1.2 is directly involved in the regulation of the nuclear translocation of nuclear factor of activated T cell 1 (NFATc1), which causes cell proliferation. Furthermore, a tumoroid study indicated that Cav1.2-dependent Ca2+ entry is also associated with the maintenance of stemness of ameloblastoma cells via the enhancement of Wnt/ß-catenin signaling activity. CONCLUSION: In conclusion, Cav1.2 regulates the NFATc1 nuclear translocation to enhance ameloblastoma cell proliferation. Furthermore, Cav1.2 dependent Ca2+ influx contributes to the Wnt/ß-catenin activity for the ameloblastoma cell stemness and tumorigenicity. Our fundamental findings could have a major impact in the fields of oral maxillofacial surgery, and genetic manipulation or pharmacological approaches to Cav1.2 can be considered as new therapeutic options.

10.
Cell Rep ; 40(12): 111391, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130492

RESUMO

Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linfócitos B/metabolismo , Humanos , Estudos Longitudinais , Receptores de Antígenos de Linfócitos B
11.
Nat Commun ; 13(1): 3960, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803931

RESUMO

Mesenchymal stromal cells (MSCs) differentiation into different lineages is precisely controlled by signaling pathways. Given that protein kinases play a crucial role in signal transduction, here we show that Microtubule Associated Serine/Threonine Kinase Family Member 4 (Mast4) serves as an important mediator of TGF-ß and Wnt signal transduction in regulating chondro-osteogenic differentiation of MSCs. Suppression of Mast4 by TGF-ß1 led to increased Sox9 stability by blocking Mast4-induced Sox9 serine 494 phosphorylation and subsequent proteasomal degradation, ultimately enhancing chondrogenesis of MSCs. On the other hand, Mast4 protein, which stability was enhanced by Wnt-mediated inhibition of GSK-3ß and subsequent Smurf1 recruitment, promoted ß-catenin nuclear localization and Runx2 activity, increasing osteogenesis of MSCs. Consistently, Mast4-/- mice demonstrated excessive cartilage synthesis, while exhibiting osteoporotic phenotype. Interestingly, Mast4 depletion in MSCs facilitated cartilage formation and regeneration in vivo. Altogether, our findings uncover essential roles of Mast4 in determining the fate of MSC development into cartilage or bone.


Assuntos
Osso e Ossos , Cartilagem , Células-Tronco Mesenquimais , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Feminino , Camundongos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Osteogênese/genética , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
12.
Cell Prolif ; 55(11): e13305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794842

RESUMO

OBJECTIVES: Ameloblastoma (AM) has been known as a benign but locally invasive tumour with high recurrence rates. Invasive behaviour of the AM results in destruction of the adjacent jawbone and the non-detectable remnants during surgery, interrupting the complete elimination of cancer cells. METHODS: To explore novel targets for the tumour cell invasion, a transcriptomic analysis between AM and odontogenic keratocyst were performed through next-generation sequencing in detail. RESULTS: Enrichment of CACNA1C gene (encoding Cav1.2) in AM, a subunit of the L-type voltage-gated calcium channel (VGCC) was observed for the first time. The expression and channel activity of Cav1.2 was confirmed by immunostaining and calcium imaging in the patient samples or primary cells. Verapamil, L-type VGCC blocker revealed suppression of the Ca2+ -induced cell aggregation and collective invasion of AM cells in vitro. Furthermore, the effect of verapamil in suppressing AM invasion into the adjacent bone was confirmed through orthotopic xenograft model specifically. CONCLUSION: Taken together, Cav1.2 maybe considered to be a therapeutic candidate to decrease the collective migration and invasion of AM.


Assuntos
Ameloblastoma , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Humanos , Ameloblastoma/tratamento farmacológico , Ameloblastoma/genética , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Verapamil/farmacologia , Animais
13.
Histochem Cell Biol ; 158(6): 595-602, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35857110

RESUMO

Tumor progression is profoundly affected by crosstalk between cancer cells and their stroma. In the past decades, the development of bioinformatics and the establishment of organoid model systems have allowed extensive investigation of the relationship between tumor cells and the tumor microenvironment (TME). However, the interaction between tumor cells and the extracellular matrix (ECM) in odontogenic epithelial neoplasms and the ECM remodeling mechanism remain unclear. In the present study, transcriptomic comparison and histopathologic analysis revealed that TME-related genes were upregulated in ameloblastoma compared to in odontogenic keratocysts. Tumoroid analysis indicated that type I collagen is required for ameloblastoma progression. Furthermore, ameloblastoma shows the capacity to remodel the ECM independently of cancer-associated fibroblasts. In conclusion, ameloblastoma-mediated ECM remodeling contributes to the formation of an invasive collagen architecture during tumor progression.


Assuntos
Colágeno , Microambiente Tumoral
14.
Front Physiol ; 13: 837094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309083

RESUMO

Accelerated tooth movement can be achieved using micro-osteoperforations (MOPs) to stimulate regeneration of the alveolar bone during minimally invasive surgical trauma. However, there is currently no standardized protocol and limited reports regarding the side effects of MOPs based on biological evidence. This study sought to evaluate the biological effects of the number of MOPs on orthodontic tooth movement (OTM) and the potential risk for root resorption. Male CD1 mice were divided into 4 groups based on the number of MOPs, as follows: Sham; 0MOP+OTM; 2MOP+OTM; and 4MOP+OTM groups. Tooth movement distance and the number of osteoclasts were higher whereas bone volume and trabecular number were lower in the 4MOP+OTM group compared to those of the 0MOP+OTM group. Immunofluorescent assay analysis indicated that the 4MOP+OTM group was positively associated with rapid cementum regeneration and periodontal ligament tissue formation. Our findings revealed that the MOP procedure affected tooth movement and did not significantly contribute to root resorption, whereas it may promote constitutive activation of cementogenesis.

15.
J Alzheimers Dis ; 86(4): 1501-1526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213369

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Inflamação/metabolismo , Placa Amiloide/metabolismo
16.
Exp Mol Med ; 54(1): 61-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058557

RESUMO

The deposition of beta-amyloid (Aß) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer's disease (AD); therefore, the early detection of Aß accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aß accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aß accumulation. We included a total of 221 CN participants with or without brain Aß. The QPLEXTM biomarkers were characterized based on age groups (1st-3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aß1-42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aß levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico , Humanos
17.
Front Cell Dev Biol ; 9: 796274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957122

RESUMO

Objectives: Mechanical stimuli are essential for the maintenance of periodontal ligament (PDL) homeostasis. Although there are several studies on atrophic changes in PDL due to occlusal hypofunction, the underlying mechanism is still unknown. Here, we aimed to explore the changes of gene expression in occlusal hypofunctional PDL and elucidate the related role in maintaining the PDL homeostasis. Methods: To investigate the transcriptomic difference between control and hypofunctional PDL tissue from patients, RNA sequencing was performed on 34 human teeth. The atrophic changes in PDL were evaluated by histological analysis. The effect of the Bardet-Biedl syndrome 7 (BBS7) knockdown was evaluated by the RT-qPCR, Western blot, wound healing, and tubule formation assay. Results: We detected that the expression of BBS7 was downregulated in occlusal hypofunctional PDL through RNA sequencing. Dynamic changes, including the number of periodontal ligament cells, alignment of collagen fibers, diameter of blood vessels, appearance of primary cilia, and torturous oxytalan fibers, were observed following occlusal hypofunction. Furthermore, Sonic hedgehog signaling (Shh) activity was closely associated with BBS7 expression in PDL cells. In addition, the cell migration and angiogenesis were also suppressed by BBS7 knockdown in vitro. Conclusion: We suggest that BBS7 plays an essential role in maintaining Shh signaling activity for PDL homeostasis.

18.
Front Cell Dev Biol ; 9: 723326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722506

RESUMO

Over the past 40 years, studies on tooth regeneration have been conducted. These studies comprised two main flows: some focused on epithelial-mesenchymal interaction in the odontogenic region, whereas others focused on creating a supernumerary tooth in the non-odontogenic region. Recently, the scope of the research has moved from conventional gene modification and molecular therapy to genome and transcriptome sequencing analyses. However, these sequencing data have been produced only in the odontogenic region. We provide RNA-Seq data of not only the odontogenic region but also the non-odontogenic region, which loses tooth-forming capacity during development and remains a rudiment. Sequencing data were collected from mouse embryos at three different stages of tooth development. These data will expand our understanding of tooth development and will help in designing developmental and regenerative studies from a new perspective.

19.
Nat Commun ; 12(1): 6710, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795204

RESUMO

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.

20.
Cell Tissue Res ; 386(2): 415-421, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34302527

RESUMO

Different stem cell-based strategies, especially induced pluripotent stem cells (iPSCs), have been exploited to regenerate teeth or restore biological and physiological functions after tooth loss. Further research is needed to establish an optimized protocol to effectively differentiate human iPSCs (hiPSCs) into dental epithelial cells (DECs). In this study, various factors were precisely modulated to facilitate differentiation of hiPSCs into DECs, which are essential for the regeneration of functional teeth. Embryoid bodies (EBs) were formed from hiPSCs as embryo-like aggregates, retinoic acid (RA) was used as an early ectodermal inducer, and bone morphogenic protein 4 (BMP4) activity was manipulated. The characteristics of DECs were enhanced and preserved after culture in keratinocyte serum-free medium (K-SFM). The yielded cell population exhibited noticeable DEC characteristics, consistent with the expression of epithelial cell and ameloblast markers. DECs demonstrated odontogenic abilities by exerting an inductive effect on human dental pulp stem cells (hDPSCs) and forming a tooth-like structure with the mouse tooth mesenchyme. Overall, our differentiation protocol provides a practical approach for applying hiPSCs for tooth regeneration.


Assuntos
Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Dente/citologia , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Humanos , Odontogênese , Dente/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA