Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chim Acta ; 1257: 341171, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37062569

RESUMO

We developed an electrochemical and fluorescent dual-mode sensor for assessing acetylcholinesterase (AChE) activity and inhibition by taking advantage of the high redox sensitivity of surface-coated mesoporous MnO2@polymer dot (MnO2@PD) towards AChE. The following phenomena constitute the basis of the detection mechanism: fluorescence resonance energy transfer (FRET) effect between MnO2 and PD; catalytic hydrolysis of acetylthiocholine (ATCh) to thiocholine (TCh) by AChE expressed by PC-12 cells, inducing fluorescence restoration and change in the conductivity of the system due to MnO2 decomposition; the presence of the inhibitor neostigmine preventing the conversion of ATCh to TCh. The surface-coated biosensor presents both fluorescence-based and electrochemical approaches for effectively monitoring AChE activity and inhibition. The fluorescence approach is based on the fluorescent "on/off" property of the system caused by MnO2 breakdown after interaction with TCh and the subsequent release of PDs. The conductivity of the coated electrode decreased dramatically as AChE concentration increased, resulting in electrochemical sensing of AChE activity and inhibition screening. Real-time wireless sensing can be conducted using a smartphone to monitor the resistance change, investigating the potential use of MnO2@PD nanocomposites in biological studies, and offering a real-time redox-fluorescent test for AChE activity monitoring and inhibitor screening.


Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Acetilcolinesterase/metabolismo , Óxidos/química , Compostos de Manganês/química , Tiocolina , Acetiltiocolina/metabolismo
2.
ChemSusChem ; 16(1): e202201528, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305311

RESUMO

Finding high-performance, low-cost, efficient catalysts for oxygen reduction reactions (ORR) is essential for sustainable energy conversion systems. Herein, highly efficient and durable iron (Fe) and cobalt (Co)-supported nitrogen (N) and sulfur (S) co-doped three-dimensional carbon nanofibers (FeCo-N, S@CNFs) were synthesized via electrospinning followed by carbonization. The as-prepared FeCo-N,S@CNFs served as efficient ORR catalysts in alkaline 0.1 m KOH solutions that were N2 and O2 -saturated. The experimental results revealed that FeCo-N,S@CNFs were highly active ORR catalysts with defect-rich active pyridinic N and pyrrolic N and metal bonds to N and S atom sites, which enhanced the ORR activity. FeCo-N,S@CNFs exhibited a high onset potential (Eonset =0.89 V) and half-wave potential (E1/2 =0.85 V), similar to the electrocatalytic activity of commercial Pt/C. Additionally, the durability of the as-prepared FeCo-N,S@CNFs catalysts was maintained for 14 h with long-term stability and high tolerance to methanol stability, accounting for their excellent catalytic ability. Furthermore, Co-N@CNFs, Fe-N@CNFs, and varying Fe and Co ratios were compared with those of FeCo-N,S@CNFs. Synergistic interactions between metals and heteroatoms were believed to play a significant role in enhancing the ORR activity. Owing to their excellent catalytic reduction ability, the as-prepared FeCo-N,S@CNFs can be widely used in battery-based systems and replace commercial Pt/C in fuel cell applications.

3.
ACS Appl Mater Interfaces ; 14(40): 45458-45475, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191137

RESUMO

Silicon (Si) has been recognized as a promising alternative to graphite anode materials for advanced lithium-ion batteries (LIBs) owing to its superior theoretical capacity and low discharge voltage. However, Si-based anodes undergo structural pulverization during cycling due to the large volume expansion (ca. 300-400%) and continuous formation of an unstable solid electrolyte interphase (SEI), resulting in fast capacity fading. To address this challenge, a series of different amounts of silicon nanoparticles (Si NPs)-encapsulated hollow porous N-doped/Co-incorporated carbon nanocubes (denoted as p-CoNC@SiX, where X = 50, 80, and 100) as anode materials for LIBs are reported in this paper. These hollow nanocubic materials were derived by facile annealing of different contents of Si NPs-encapsulated Zn/Co-bimetallic zeolitic imidazolate frameworks (ZIF@Si) as self-sacrificial templates. Owing to the advantages of well-defined hollow framework clusters and highly conductive hollow carbon frameworks, the hollow porous p-CoNC@SiX significantly improved the electronic conductivity and Li+ diffusion coefficient by an order of magnitude higher than that of Si NPs. The as-prepared p-CoNC@Si80 with 80 wt % Si NPs delivered a continuously increasing specific capacity of 1008 mAh g-1 at 500 mA g-1 over 500 cycles, excellent reversible capacity (∼1361 mAh g-1 at 0.1 A g-1), and superior rate capability (∼603 mAh g-1 at 3 A g-1) along with an unprecedented long-life cyclic stability of ∼1218 mAh g-1 at 1 A g-1 over 1000 cycles caused by low volume expansion (9.92%) and suppressed SEI side reactions. These findings provide new insights into the development of highly reversible Si-based anode materials for advanced LIBs.

4.
ACS Appl Mater Interfaces ; 14(39): 45059-45072, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36165465

RESUMO

In this study, aluminum-graphene supercapacitors (denoted as aluminum-ion supercapacitors; ASCs), consisting of a battery-type aluminum anode, a capacitor-type graphene cathode, and ionic liquid 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum chloride (AlCl3) electrolyte, were prepared. This study primarily aimed to investigate the enhanced electrochemical performance of ASCs arising from changes in the surface oxide layer and morphology via electrochemical surface treatments, including electropolishing and electrodeposition of aluminum anodes. The ASC devices based on an electrodeposited anode at a current density of 3 A g-1 exhibited a high specific capacity of 211 F g-1 compared to that of the electropolished anode (∼186 F g-1); these were 20 and 5.7%, respectively, higher than that of the pristine aluminum anode. In particular, the electrodeposited ASC delivered an energy density of 151 W h kg-1 at a power density of 3,390 W kg-1. Furthermore, a maximum power density of 11,104 W kg-1 was achieved at an energy density of 124.3 W h kg-1. These values are among the best as compared to those of previously reported aluminum-based supercapacitors, suggesting the potential feasibility of these ASCs with outstanding energy and power densities for next-generation energy storage devices.

5.
Sci Rep ; 12(1): 12291, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853980

RESUMO

With recent rapid increases in Cu resistivity, RC delay has become an important issue again. Co, which has a low electron mean free path, is being studied as beyond Cu metal and is expected to minimize this increase in resistivity. However, extrinsic time-dependent dielectric breakdown has been reported for Co interconnects. Therefore, it is necessary to apply a diffusion barrier, such as the Ta/TaN system, to increase interconnect lifetimes. In addition, an ultrathin diffusion barrier should be formed to occupy as little area as possible. This study provides a thermodynamic design for a self-forming barrier that provides reliability with Co interconnects. Since Cr, Mn, Sn, and Zn dopants exhibited surface diffusion or interfacial stable phases, the model constituted an effective alloy design. In the Co-Cr alloy, Cr diffused into the dielectric interface and reacted with oxygen to provide a self-forming diffusion barrier comprising Cr2O3. In a breakdown voltage test, the Co-Cr alloy showed a breakdown voltage more than 200% higher than that of pure Co. The 1.2 nm ultrathin Cr2O3 self-forming barrier will replace the current bilayer barrier system and contribute greatly to lowering the RC delay. It will realize high-performance Co interconnects with robust reliability in the future.

6.
Nanomicro Lett ; 13(1): 171, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34370082

RESUMO

Rechargeable aluminum-ion batteries (AIBs) are a new generation of low-cost and large-scale electrical energy storage systems. However, AIBs suffer from a lack of reliable cathode materials with insufficient intercalation sites, poor ion-conducting channels, and poor diffusion dynamics of large chloroaluminate anions (AlCl4- and Al2Cl7-). To address these issues, surface-modified graphitic carbon materials [i.e., acid-treated expanded graphite (AEG) and base-etched graphite (BEG)] are developed as novel cathode materials for ultra-fast chargeable AIBs. AEG has more turbostratically ordered structure covered with abundant micro- to nano-sized pores on the surface structure and expanded interlayer distance (d002 = 0.3371 nm) realized by surface treatment of pristine graphite with acidic media, which can be accelerated the diffusion dynamics and efficient AlCl4- ions (de)-intercalation kinetics. The AIB system employing AEG exhibits a specific capacity of 88.6 mAh g-1 (4 A g-1) and ~ 80 mAh g-1 at an ultra-high current rate of 10 A g-1 (~ 99.1% over 10,000 cycles). BEG treated with KOH solution possesses the turbostratically disordered structure with high density of defective sites and largely expanded d-spacing (d002 = 0.3384 nm) for attracting and uptaking more AlCl4- ions with relatively shorter penetration depth. Impressively, the AIB system based on the BEG cathode delivers a high specific capacity of 110 mAh g-1 (4 A g-1) and ~ 91 mAh g-1 (~ 99.9% over 10,000 cycles at 10 A g-1). Moreover, the BEG cell has high energy and power densities of 247 Wh kg-1 and 44.5 kW kg-1. This performance is one of the best among the AIB graphitic carbon materials reported for chloroaluminate anions storage performance. This finding provides great significance for the further development of rechargeable AIBs with high energy, high power density, and exceptionally long life.

7.
RSC Adv ; 11(40): 24702-24708, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481048

RESUMO

The electrochemical CO2 reduction reaction (CO2RR), which converts CO2 into value-added feedstocks and renewable fuels, has been increasingly studied as a next-generation energy and environmental solution. Here, we report that single-atom metal sites distributed around active materials can enhance the CO2RR performance by controlling the Lewis acidity-based local CO2 concentration. By utilizing the oxidation Gibbs free energy difference between silver (Ag), zinc (Zn), and carbon (C), we can produce Ag nanoparticle-embedded carbon nanofibers (CNFs) where Zn is atomically dispersed by a one-pot, self-forming thermal calcination process. The CO2RR performance of AgZn-CNF was investigated by a flow cell with a gas diffusion electrode (GDE). Compared to Ag-CNFs without Zn species (53% at -0.85 V vs. RHE), the faradaic efficiency (FE) of carbon monoxide (CO) was approximately 20% higher in AgZn-CNF (75% at -0.82 V vs. RHE) with 1 M KOH electrolyte.

8.
RSC Adv ; 11(14): 8198-8206, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423321

RESUMO

The oxygen evolution reaction (OER) is the key reaction in water splitting systems, but compared with the hydrogen evolution reaction (HER), the OER exhibits slow reaction kinetics. In this work, boron doping into nickel-iron layered double hydroxide (NiFe LDH) was evaluated for the enhancement of OER electrocatalytic activity. To fabricate boron-doped NiFe LDH (B:NiFe LDH), gaseous boronization, a gas-solid reaction between boron gas and NiFe LDH, was conducted at a relatively low temperature. Subsequently, catalyst activation was performed through electrochemical oxidation for maximization of boron doping and improved OER performance. As a result, it was possible to obtain a remarkably reduced overpotential of 229 mV at 10 mA cm-2 compared to that of pristine NiFe LDH (315 mV) due to the effect of facile charge-transfer resistance by boron doping and improved active sites by electrochemical oxidation.

9.
Phys Chem Chem Phys ; 22(47): 27525-27528, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33325471

RESUMO

Aluminum-ion batteries have many advantages such as the natural abundance of aluminum, high theoretical capacity, and low cost. However, the ionic liquid commonly used as the electrolyte for aluminum-ion batteries has high viscosity, which hinders the migration of charge carriers. In this study, we used various organic solvents as additives for the ionic liquid electrolyte and investigated their effect on the battery performance. The electrolyte containing 45% (v/v) benzene had the best electrochemical properties, which led to a high specific capacity of 90 mA h g-1 at an extremely high current density of 5 A g-1.

10.
ACS Appl Mater Interfaces ; 12(34): 37929-37942, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846494

RESUMO

This study investigated a selective and sensitive theragnosis system for the specific targeting of the membrane and nuclei based on visible-light and pH-responsive TiO2-integrated cross-linked carbon dot (C-CD/TiO2) for tumor detection and controllable photothermal therapy. The cross-linking system was formed by boronate ester linkages between the TiO2-immobilized Dopa-decyl (D-CD) and zwitterionic-formed CD (Z-CD) for nuclear targeting, which showed fluorescence "off" at physiological pH. The fluorescence recovered to the "on" state in acidic cancer cells owing to cleavages of the boronate ester bonds, resulting in the disruption of the Förster resonance energy transfer that generated different CDs useful for tumor-selective biosensors and therapy. D-CD, which is hydrophobic, can penetrate the hydrophobic sites of the cell membrane; it caused a loss in the hydrophobicity of these sites after visible-light irradiation. This was achieved by the photocatalytic activity of the TiO2 modulating energy bandgap, whereas the Z-CD targeted the nucleus, as confirmed by merged confocal microscopy images. D-CD augmented by photothermal heat also exhibited selective anticancer activity in the acidic tumor condition but showed only minimal effects at a normal site at pH 7.4. After C-CD/TiO2 injection to an in vivo tumor model, C-CD/TiO2 efficiently ablated tumors under NIR light irradiation. The C-CD/TiO2 group showed up-regulation of the pro-apoptotic markers such as P53 and BAX in tumor. This material exhibited its potential as a theragnostic sensor with excellent biocompatibility, high sensitivity, selective imaging, and direct anticancer activity via photothermal therapy.


Assuntos
Raios Infravermelhos , Luz , Pontos Quânticos/química , Titânio/química , Animais , Carbono/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias/patologia , Neoplasias/terapia , Terapia Fototérmica , Pontos Quânticos/uso terapêutico , Pontos Quânticos/toxicidade , Transplante Heterólogo
11.
ACS Nano ; 14(7): 8409-8420, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32520523

RESUMO

Recently, a great deal of research has focused on the study of self-healing hydrogels possessing electronic conductivity due to their wide applicability for use in biosensors, bioelectronics, and energy storage. The low solubility, poor biocompatibility, and lack of effective stimuli-responsive properties of their sp2 carbon-rich hybrid organic polymers, however, have proven challenging for their use in electroconductive self-healing hydrogel fabrication. In this study, we developed stimuli-responsive electrochemical wireless hydrogel biosensors using ureidopyriminone-conjugated gelatin (Gel-UPy) hydrogels that incorporate diselenide-containing carbon dots (dsCD) for cancer detection. The cleavage of diselenide groups of the dsCD within the hydrogels by glutathione (GSH) or reactive oxygen species (ROS) initiates the formation of hydrogen bonds that affect the self-healing ability, conductivity, and adhesiveness of the Gel-UPy/dsCD hydrogels. The Gel-UPy/dsCD hydrogels demonstrate more rapid healing under tumor conditions (MDA-MB-231) compared to that observed under physiological conditions (MDCK). Additionally, the cleavage of diselenide bonds affects the electrochemical signals due to the degradation of dsCD. The hydrogels also exhibit excellent adhesiveness and in vivo cancer detection ability after exposure to a high concentration of GSH or ROS, and this is comparable to results observed in a low concentration environment. Based on the combined self-healing, conductivity, and adhesiveness properties of the Gel-UPy/dsCD, this hydrogel exhibits promise for use in biomedical applications, particularly those that involve cancer detection, due to its selectivity and sensitivity under tumor conditions.


Assuntos
Hidrogéis , Neoplasias , Adesivos , Carbono , Condutividade Elétrica , Gelatina
12.
Nanotechnology ; 31(41): 415401, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32580178

RESUMO

To enhance the intrinsic electrical conductivities of TiO2(B) nanobelts, nitrogen(N)-doped TiO2(B) nanobelts (N-TNB) were prepared in this study by a facile and cost-effective hydrothermal method using urea as the nitrogen source with TiO2 (P25) nanoparticles. x-ray photoelectron spectroscopy confirmed that the N-atoms preferentially occupied up to ∼0.516 atom% in the interstitial sites of the N-TNB and the maximum concentration of substituted-N bonds in the N-TNB was ∼0.154 atom%, thereby the total concentration of doped nitrogen elements of ∼0.67 atom% improved the high intrinsic electrical conductivity and ionic diffusivity of the TiO2(B) nanobelts. The as-prepared N-TNB electrode delivered the highest specific capacity of 133.9 mAh g-1 in the first cycle, with an exceptional cyclic capacity retention at an ultrafast current rate of 1000 mA g-1; this is not less than 51% after 500 cycles and represents an excellent rate capability of ∼37 mAh g-1 at an ultra-high rate of 40 C. These values are among the best ever reported on comparison of the delivered highest discharge capacity of N-TNB at 1000 mA g-1 and high-rate capabilities of its Li+ ion storage with the literature data for N-TNB (∼231.5 mAh g-1 at a very low current density of 16.75 mA g-1, ∼0.1 C) of similar materials used in sodium-ion batteries. This implies the potential feasibility of these N-TNB as high-capacity anode materials for next-generation, high-energy-density, electrochemical energy-storage devices.

13.
Nanotechnology ; 31(29): 295405, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244232

RESUMO

Oxygen evolution reaction (OER), a sluggish multistep process in electrochemical water splitting, is still a challenging issue to achieve with cheap, earth-abundant non-precious and non-polluting materials. In this work, three different electrocatalysts, specifically NiCo2O4, NiCo2 S4, and NiCo2 Se4, synthesized by simple hydrothermal process, show excellent OER activity. This report not only projects OER performances but also demonstrates a modified method for the transformation of NiCo2O4 to NiCo2 S4 and NiCo2 Se4 via sulfidation and selenization reactions. The well crystalline, porous nature of NiCo2O4, NiCo2 S4, and NiCo2Se4 electrocatalysts with one dimensional (1D) structural morphology affords overpotentials of 346 mV, 309 mV and 270 mV at current density of 10 mA cm-2 in 1 M KOH. In particular, NiCo2Se4 exhibits a low overpotential as well as a smaller Tafel slope of 63 mV dec-1, leading to robust stability in alkaline conditions. The abundant active sites, large mass and size of NiCo2Se4 enhances the performance of the OER. This type of selenide-based material with low toxicity is also an advantage for eco-friendly applications.

14.
Nanotechnology ; 31(3): 03LT01, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31577997

RESUMO

Stability is one of the key requirements of electrocatalyst support materials for polymer electrolyte membrane fuel cells. To develop a highly stable Pt catalyst support material, in this work, we have synthesized Nb-doped TiO2 electrocatalyst supports. The amount of Nb dopant is measured using inductively coupled plasma mass spectrometry, while the characteristics of the as-prepared Nb-doped TiO2 supports are analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Durability experiments are conducted by high potential cycling using the as-prepared Pt/TiO2-Nb x materials; half-cell cyclic voltammetry and single-cell performance measurements reveal that Pt/TiO2-Nb4 shows superior durability and corrosion resistance with a degradation rate of only 20% while the performance of commercial Pt/C support decreased 55%.

15.
Sci Rep ; 9(1): 19539, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862953

RESUMO

Both high activity and mass production potential are important for bifunctional electrocatalysts for overall water splitting. Catalytic activity enhancement was demonstrated through the formation of CoS2 nanoparticles with mono-phase and extremely porous structures. To fabricate porous structures at the nanometer scale, Co-based metal-organic frameworks (MOFs), namely a cobalt Prussian blue analogue (Co-PBA, Co3[Co(CN)6]2), was used as a porous template for the CoS2. Then, controlled sulfurization annealing converted the Co-PBA to mono-phase CoS2 nanoparticles with ~ 4 nm pores, resulting in a large surface area of 915.6 m2 g-1. The electrocatalysts had high activity for overall water splitting, and the overpotentials of the oxygen evolution reaction and hydrogen evolution reaction under the operating conditions were 298 mV and -196 mV, respectively, at 10 mA cm-2.

16.
Nano Lett ; 19(12): 8644-8652, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671269

RESUMO

Controlled phase conversion in polymorphic transition metal dichalcogenides (TMDs) provides a new synthetic route for realizing tunable nanomaterials. Most conversion methods from the stable 2H to metastable 1T phase are limited to kinetically slow cation insertion into atomically thin layered TMDs for charge transfer from intercalated ions. Here, we report that anion extraction by the selective reaction between carbon monoxide (CO) and chalcogen atoms enables predictive and scalable TMD polymorph control. Sulfur vacancy, induced by anion extraction, is a key factor in molybdenum disulfide (MoS2) polymorph conversion without cation insertion. Thermodynamic MoS2-CO-CO2 ternary phase diagram offers a processing window for efficient sulfur vacancy formation with precisely controlled MoS2 structures from single layer to multilayer. To utilize our efficient phase conversion, we synthesize vertically stacked 1T-MoS2 layers in carbon nanofibers, which exhibit highly efficient hydrogen evolution reaction catalytic activity. Anion extraction induces the polymorph conversion of tungsten disulfide (WS2) from 2H to 1T. This reveals that our method can be utilized as a general polymorph control platform. The versatility of the gas-solid reaction-based polymorphic control will enable the engineering of metastable phases in 2D TMDs for further applications.

17.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661903

RESUMO

Herein, we describe the fabrication and characterization of carbonized disulfide core-crosslinked polymer dots with pH-cleavable colorimetric nanosensors, based on diol dye-conjugated fluorescent polymer dots (L-PD), for reduction-triggered paclitaxel (PTX) release during fluorescence imaging-guided chemotherapy of tumors. L-PD were loaded with PTX (PTX loaded L-PD), via π-π stackings or hydrophobic interactions, for selective theragnosis by enhanced release of PTX after the cleavage of disulfide bonds by high concentration of glutathione (GSH) in a tumor. The nano-hybrid system showed fluorescence quenching behavior with less than 2% of PTX released under physiological conditions. However, in a tumor microenvironment, the fluorescence recovered at an acidic-pH, and PTX (approximately 100% of the drug release) was released efficiently out of the matrix by reduction caused by the GSH level in the tumor cells, which improved the effectiveness of the cancer treatment. Therefore, the colorimetric nanosensor showed promising potential in distinguishing between normal and cancerous tissues depending on the surrounding pH and GSH concentrations so that PTX can be selectively delivered into cancer cells for improved cancer diagnosis and chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas Biossensoriais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colorimetria , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluorescência , Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/ultraestrutura , Oxirredução , Paclitaxel/síntese química , Paclitaxel/química , Paclitaxel/uso terapêutico
18.
Sci Rep ; 9(1): 7872, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133709

RESUMO

Amorphous oxide semiconductor (AOS)-based Schottky diodes have been utilized for selectors in crossbar array memories to improve cell-to-cell uniformity with a low-temperature process. However, thermal instability at interfaces between the AOSs and metal electrodes can be a critical issue for the implementation of reliable Schottky diodes. Under post-fabrication annealing, an excessive redox reaction at the ohmic interface can affect the bulk region of the AOSs, inducing an electrical breakdown of the device. Additionally, structural relaxation (SR) of the AOSs can increase the doping concentration at the Schottky interface, which results in a degradation of the rectifying performance. Here, we improved the thermal stability at AOS/metal interfaces by regulating the oxygen vacancy (VO) concentration at both sides of the contact. For a stable quasi-ohmic contact, a Cu-Mn alloy was introduced instead of a single component reactive metal. As Mn only takes up O in amorphous In-Ga-Zn-O (a-IGZO), excessive VO generation in bulk region of a-IGZO can be prevented. At the Schottky interfaces, the barrier characteristics were not degraded by thermal annealing as the Ga concentration in a-IGZO increased. Ga not only reduces the inherent VO concentration but also retards SR, thereby suppressing tunneling conduction and enhancing the thermal stability of devices.

19.
Biomater Sci ; 7(6): 2600-2610, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30984942

RESUMO

Here, we designed a pH-responsive Indocyanine Green (ICG)-loaded zwitterion fluorescent carbon dot (CD)-encapsulating mesoporous silica nanoparticle (MSN) for pH-tunable image-guided photothermal therapy. ICG was loaded into MSN(CD) via hydrophobic and electrostatic interactions between zwitterionic CDs and ICG to achieve a controlled photothermal temperature with a fluorescent "off/on" system. The porosity of the MSNs was altered after ICG loading because of intermolecular interactions between the CDs and ICG inside the MSN shell and core, which blocked the MSN pore. The acidic environment pH affected the fluorescent signals of the ICG-MSN(CD), reflecting the "off-on" characteristics of the synthesized MSN, which then induced the release of ICG from the matrices. Moreover, the photothermal conversion of ICG-MSN(CD) showed sufficient heat generation to kill cancer cells at an acidic pH with low-temperature elevation at physiological pH. ICG-MSN(CD) demonstrated good cell viability of MDA-MB-231 cells without irradiation; however, high necrosis was observed when the environment was adjusted to acidic pH and after near-infrared irradiation. These pH-responsive photothermal mesoporous silica nanoparticles may have applications in biomedicine, particularly for cancer treatment.


Assuntos
Carbono/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Raios Infravermelhos , Nanopartículas/química , Fototerapia , Dióxido de Silício/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Verde de Indocianina/química , Verde de Indocianina/metabolismo , Verde de Indocianina/farmacologia , Necrose/induzido quimicamente , Porosidade , Espécies Reativas de Oxigênio/metabolismo
20.
RSC Adv ; 9(12): 6589-6595, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518481

RESUMO

A SnO2-TiO2 electrode was prepared via anodization and subsequent anodic potential shock for a binder-free anode for lithium-ion battery applications. Perpendicularly oriented TiO2 microcones are formed by anodization; SnO2, originating in a Na2SnO3 precursor, is then deposited in the valleys between the microcones and in their hollow cores by anodic potential shock. This sequence is confirmed by SEM and TEM analyses and EDS element mapping. The SnO2-TiO2 binder-free anode is evaluated for its C-rate performance and long-term cyclability in a half-cell measurement apparatus. The SnO2-TiO2 anode exhibits a higher specific capacity than the one with pristine TiO2 microcones and shows excellent capacity recovery during the rate capability test. The SnO2-TiO2 microcone structure shows no deterioration caused by the breakdown of electrode materials over 300 cycles. The charge/discharge capacity is at least double that of the TiO2 microcone material in a long-term cycling evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA