Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39443150

RESUMO

BACKGROUND AND PURPOSE: To train and validate a deep learning (DL)-based segmentation model for cerebral microbleeds (CMB) on susceptibility-weighted MRI; and to find associations between CMB, cognitive impairment, and vascular risk factors. MATERIALS AND METHODS: Participants in this single-institution retrospective study underwent brain MRI to evaluate cognitive impairment between January-September 2023. For training the DL model, the nnU-Net framework was used without modifications. The DL model's performance was evaluated on independent internal and external validation datasets. Linear regression analysis was used to find associations between log-transformed CMB numbers, cognitive function (mini-mental status examination [MMSE]), white matter hyperintensity (WMH) burden, and clinical vascular risk factors (age, sex, hypertension, diabetes, lipid profiles, and body mass index). RESULTS: Training of the DL model (n = 287) resulted in a robust segmentation performance with an average dice score of 0.73 (95% CI, 0.67-0.79) in an internal validation set, (n = 67) and modest performance in an external validation set (dice score = 0.46, 95% CI, 0.33-0.59, n = 68). In a temporally independent clinical dataset (n = 448), older age, hypertension, and WMH burden were significantly associated with CMB numbers in all distributions (total, lobar, deep, and cerebellar; all P <.01). MMSE was significantly associated with hyperlipidemia (ß = 1.88, 95% CI, 0.96-2.81, P <.001), WMH burden (ß = -0.17 per 1% WMH burden, 95% CI, -0.27-0.08, P <.001), and total CMB number (ß = -0.01 per 1 CMB, 95% CI, -0.02-0.001, P = .04) after adjusting for age and sex. CONCLUSIONS: The DL model showed a robust segmentation performance for CMB. In all distributions, CMB had significant positive associations with WMH burden. Increased WMH burden and CMB numbers were associated with decreased cognitive function. ABBREVIATIONS: CMB = cerebral microbleed; DL = deep learning, DSC = dice similarity coefficient; MMSE = mini-mental status examination; SVD = small vessel disease; SWI = susceptibility-weighted image; WMH = white matter hyperintensity.

2.
J Imaging Inform Med ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693333

RESUMO

Ischemic stroke segmentation at an acute stage is vital in assessing the severity of patients' impairment and guiding therapeutic decision-making for reperfusion. Although many deep learning studies have shown attractive performance in medical segmentation, it is difficult to use these models trained on public data with private hospitals' datasets. Here, we demonstrate an ensemble model that employs two different multimodal approaches for generalization, a more effective way to perform on external datasets. First, after we jointly train a segmentation model on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) MR modalities, the model is inferred on the DWI images. Second, a channel-wise segmentation model is trained by concatenating the DWI and ADC images as input, and then is inferred using both MR modalities. Before training with ischemic stroke data, we utilized BraTS 2021, a public brain tumor dataset, for transfer learning. An extensive ablation study evaluates which strategy learns better representations for ischemic stroke segmentation. In our study, nnU-Net well-known for robustness is selected as our baseline model. Our proposed method is evaluated on three different datasets: the Asan Medical Center (AMC) I and II, and the 2022 Ischemic Stroke Lesion Segmentation (ISLES). Our experiments are widely validated over a large, multi-center, and multi-scanner dataset with a huge amount of 846 scans. Not only stroke lesion models can benefit from transfer learning using brain tumor data, but combining the MR modalities using different training schemes also highly improves segmentation performance. The method achieved a top-1 ranking in the ongoing ISLES'22 challenge and performed particularly well on lesion-wise metrics of interest to neuroradiologists, achieving a Dice coefficient of 78.69% and a lesion-wise F1 score of 82.46%. Also, the method was relatively robust on the AMC I (Dice, 60.35%; lesion-wise F1, 68.30%) and II (Dice; 74.12%; lesion-wise F1, 67.53%) datasets in different settings. The high segmentation accuracy of our proposed method could improve radiologists' ability to detect ischemic stroke lesions in MRI images. Our model weights and inference code are available on https://github.com/MDOpx/ISLES22-model-inference .

3.
Korean J Radiol ; 24(11): 1061-1080, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724586

RESUMO

Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Estudos Prospectivos , Radiologia/métodos , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA