Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
medRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38947072

RESUMO

Background: Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods: We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results: Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions: Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.

2.
mBio ; : e0241723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971267

RESUMO

IMPORTANCE: Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.

3.
bioRxiv ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090500

RESUMO

In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.

4.
Front Virol ; 22022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35982753

RESUMO

HIV-1 accessory proteins Nef and Vpu enhance viral pathogenesis through partially overlapping immune evasion activities. Attenuated Nef or Vpu functions have been reported in individuals who display slower disease progression, but few studies have assessed the relative impact of these proteins in non-B HIV-1 subtypes or examined paired proteins from the same individuals. Here, we examined the sequence and function of matched Nef and Vpu clones isolated from 29 long-term survivors (LTS) from Rwanda living with HIV-1 subtype A and compared our results to those of 104 Nef and 62 Vpu clones isolated from individuals living with chronic untreated HIV-1 subtype A from the same geographic area. Nef and vpu coding regions were amplified from plasma HIV RNA and cloned. The function of one intact, phylogenetically-validated Nef and Vpu clone per individual was then quantified by flow cytometry following transient expression in an immortalized CD4+ T-cell line. We measured the ability of each Nef clone to downregulate CD4 and HLA class I, and of each Vpu clone to downregulate CD4 and Tetherin, from the cell surface. Results were normalized to reference clones (Nef-SF2 and Vpu-NL4.3). We observed that Nef-mediated CD4 and HLA downregulation functions were lower in LTS compared to the control cohort (Mann-Whitney p=0.03 and p<0.0001, respectively). Moreover, we found a positive correlation between Nef-mediated CD4 downregulation function and plasma viral load in LTS and controls (Spearman ρ= 0.59, p=0.03 and ρ=0.30, p=0.005, respectively). In contrast, Vpu-mediated functions were similar between groups and did not correlate with clinical markers. Further analyses identified polymorphisms at Nef codon 184 and Vpu codons 60-62 that were associated with function, which were confirmed through mutagenesis. Overall, our results support attenuated function of Nef, but not Vpu, as a contributor to slower disease progression in this cohort of long-term survivors with HIV-1 subtype A.

5.
Nat Commun ; 13(1): 4888, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985993

RESUMO

Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.


Assuntos
Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Infecções por HIV , HIV-1 , Vacina BNT162 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Granzimas , Infecções por HIV/imunologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Latência Viral , Vacinas de mRNA , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
6.
Methods Mol Biol ; 2407: 357-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985675

RESUMO

HIV-1 integrates into human chromosomes to establish a lifelong reservoir of virally infected cells. However, the majority of integrated viral DNA shows lethal defects, likely due to errors introduced during reverse transcription of viral RNA. Identifying and quantifying HIV-1 DNA sequences that are genome-intact and can give rise to rebound viremia during antiretroviral treatment interruption are critical steps for understanding the complexity and evolutionary dynamics of HIV-1 reservoir cells. Here, we describe FLIP-Seq, (Full-Length Individual Proviral Sequencing) a near full-length, single-genome next-generation sequencing approach for analyzing HIV-1 DNA in human cells. Briefly, this technique involves sequential dilution of proviral DNA to single genomes, amplification of near full-length viral DNA, deep sequencing of amplification products, and a biocomputational analysis designed to distinguish genome-intact HIV-1 DNA from defective viral DNA species. This procedure can be performed with small numbers of cells from highly purified CD4 T cell subsets, allows to generate an absolute quantification of viral sequences present in a given cell population, provides insight into phylogenetic associations of intact proviruses, and can identify proportions of sequence-identical proviruses likely derived from clonally expanded reservoir cells.


Assuntos
Infecções por HIV , HIV-1 , Sequência de Bases , Linfócitos T CD4-Positivos , DNA Viral/genética , Infecções por HIV/genética , HIV-1/genética , Humanos , Filogenia , Provírus/genética , Análise de Sequência de DNA , Carga Viral/métodos
7.
Viruses ; 13(9)2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34578455

RESUMO

HIV persists via integration of the viral DNA into the human genome. The HIV DNA pool within an infected individual is a complex population that comprises both intact and defective viral genomes, each with a distinct integration site, in addition to a unique repertoire of viral quasi-species. Obtaining an accurate profile of the viral DNA pool is critical to understanding viral persistence and resolving interhost differences. Recent advances in next-generation deep sequencing (NGS) technologies have enabled the development of two sequencing assays to capture viral near-full- genome sequences at single molecule resolution (FLIP-seq) or to co-capture full-length viral genome sequences in conjunction with its associated viral integration site (MIP-seq). This commentary aims to provide an overview on both FLIP-seq and MIP-seq, discuss their strengths and limitations, and outline specific chemistry and bioinformatics concerns when using these assays to study HIV persistence.


Assuntos
Genoma Viral , Infecções por HIV/virologia , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Provírus/genética , Integração Viral , Biologia Computacional , DNA Viral/genética , Genoma Humano , Humanos , Análise de Sequência de DNA
9.
AIDS ; 35(7): 1083-1089, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635845

RESUMO

OBJECTIVE: Dolutegravir (DTG) is now a preferred component of first-line antiretroviral therapy (ART). However, prevalence data on natural resistance to integrase inhibitors [integrase strand transfer inhibitors (INSTIs)] in circulating non-subtype B HIV-1 in sub-Saharan Africa is scarce. Our objective is to report prevalence of pre-treatment integrase polymorphisms associated with resistance to INSTIs in an ART-naive cohort with diverse HIV-1 subtypes. DESIGN: We retrospectively examined HIV-1 integrase sequences from Uganda. METHODS: Plasma samples were derived from the Uganda AIDS Rural Treatment Outcomes (UARTO) cohort, reflecting enrollment from 2002 to 2010, prior to initiation of ART. HIV-1 integrase was amplified using nested-PCR and Sanger-sequenced (HXB2 4230-5093). Stanford HIVdb v8.8 was used to infer clinically significant INSTI-associated mutations. Human leukocyte antigen (HLA) typing was performed for all study participants. RESULTS: Plasma samples from 511 ART-naive individuals (subtype: 48% A1, 39% D) yielded HIV-1 integrase genotyping results. Six out of 511 participants (1.2%) had any major INSTI-associated mutations. Of these, two had E138T (subtype A1), three had E138E/K (subtype D), and one had T66T/I (subtype D). No participants had mutations traditionally associated with high levels of INSTI resistance. HLA genotypes A∗02:01/05/14, B∗44:15, and C∗04:07 predicted the presence of L74I, a mutation recently observed in association with long-acting INSTI cabotegravir virologic failure. CONCLUSION: We detected no HIV-1 polymorphisms associated with high levels of DTG resistance in Uganda in the pre-DTG era. Our results support widespread implementation of DTG but careful monitoring of patients on INSTI with virologic failure is warranted to determine if unique mutations predict failure for non-B subtypes of HIV-1.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , África Subsaariana , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Integrase de HIV/genética , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/genética , Humanos , Mutação , Estudos Retrospectivos , Uganda
10.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400687

RESUMO

Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Antígenos HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Adulto , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Coortes , Feminino , Granzimas/metabolismo , Infecções por HIV/virologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Interferon gama/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Linfócitos T/efeitos dos fármacos , Carga Viral , Adulto Jovem
11.
Nat Commun ; 12(1): 165, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420062

RESUMO

The Intact Proviral DNA Assay (IPDA) was developed to address the critical need for a scalable method for intact HIV-1 reservoir quantification. This droplet digital PCR-based assay simultaneously targets two HIV-1 regions to distinguish genomically intact proviruses against a large background of defective ones, and its application has yielded insights into HIV-1 persistence. Reports of assay failures however, attributed to HIV-1 polymorphism, have recently emerged. Here, we describe a diverse North American cohort of people with HIV-1 subtype B, where the IPDA yielded a failure rate of 28% due to viral polymorphism. We further demonstrate that within-host HIV-1 diversity can lead the IPDA to underestimate intact reservoir size, and provide examples of how this phenomenon could lead to erroneous interpretation of clinical trial data. While the IPDA represents a major methodological advance, HIV-1 diversity should be addressed before its widespread adoption as a principal readout in HIV-1 remission trials.


Assuntos
Biodiversidade , DNA Viral/análise , HIV-1/genética , Provírus/genética , Sequência de Bases , Linfócitos T CD4-Positivos/virologia , DNA Viral/genética , Infecções por HIV/virologia , Humanos , Filogenia , Reação em Cadeia da Polimerase/métodos
12.
PLoS Pathog ; 16(9): e1008813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925973

RESUMO

HIV Nef counteracts cellular host restriction factors SERINC3 and SERINC5, but our understanding of how naturally occurring global Nef sequence diversity impacts these activities is limited. Here, we quantify SERINC3 and SERINC5 internalization function for 339 Nef clones, representing the major pandemic HIV-1 group M subtypes A, B, C and D. We describe distinct subtype-associated hierarchies for Nef-mediated internalization of SERINC5, for which subtype B clones display the highest activities on average, and of SERINC3, for which subtype B clones display the lowest activities on average. We further identify Nef polymorphisms that modulate its ability to counteract SERINC proteins, including substitutions in the N-terminal domain that selectively impair SERINC3 internalization. Our findings demonstrate that the SERINC antagonism activities of HIV Nef differ markedly among major viral subtypes and between individual isolates within a subtype, suggesting that variation in these functions may contribute to global differences in viral pathogenesis.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Polimorfismo Genético , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/genética , Infecções por HIV/metabolismo , Soropositividade para HIV , Interações Hospedeiro-Patógeno , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , Células Tumorais Cultivadas , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
13.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376625

RESUMO

Downregulation of BST-2/tetherin and CD4 by HIV-1 viral protein U (Vpu) promotes viral egress and allows infected cells to evade host immunity. Little is known however about the natural variability in these Vpu functions among the genetically diverse viral subtypes that contribute to the HIV-1 pandemic. We collected Vpu isolates from 332 treatment-naive individuals living with chronic HIV-1 infection in Uganda, Rwanda, South Africa, and Canada. Together, these Vpu isolates represent four major HIV-1 group M subtypes (A [n = 63], B [n = 84], C [n = 94], and D [n = 59]) plus intersubtype recombinants and uncommon strains (n = 32). The ability of each Vpu clone to downregulate endogenous CD4 and tetherin was quantified using flow cytometry following transfection into an immortalized T-cell line and compared to that of a reference Vpu clone derived from HIV-1 subtype B NL4.3. Overall, the median CD4 downregulation function of natural Vpu isolates was similar to that of NL4.3 (1.01 [interquartile range {IQR}, 0.86 to 1.18]), while the median tetherin downregulation function was moderately lower than that of NL4.3 (0.90 [0.79 to 0.97]). Both Vpu functions varied significantly among HIV-1 subtypes (Kruskal-Wallis P < 0.0001). Specifically, subtype C clones exhibited the lowest CD4 and tetherin downregulation activities, while subtype D and B clones were most functional for both activities. We also identified Vpu polymorphisms associated with CD4 or tetherin downregulation function and validated six of these using site-directed mutagenesis. Our results highlight the marked extent to which Vpu function varies among global HIV-1 strains, raising the possibility that natural variation in this accessory protein may contribute to viral pathogenesis and/or spread.IMPORTANCE The HIV-1 accessory protein Vpu enhances viral spread by downregulating CD4 and BST-2/tetherin on the surface of infected cells. Natural variability in these Vpu functions may contribute to HIV-1 pathogenesis, but this has not been investigated among the diverse viral subtypes that contribute to the HIV-1 pandemic. In this study, we found that Vpu function differs significantly among HIV-1 subtypes A, B, C, and D. On average, subtype C clones displayed the lowest ability to downregulate both CD4 and tetherin, while subtype B and D clones were more functional. We also identified Vpu polymorphisms that associate with functional differences among HIV-1 isolates and subtypes. Our study suggests that genetic diversity in Vpu may play an important role in the differential pathogenesis and/or spread of HIV-1.


Assuntos
Antígenos CD/biossíntese , Antígenos CD4/biossíntese , Regulação para Baixo , Infecções por HIV , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antígenos CD/genética , Antígenos CD4/genética , Linhagem Celular Transformada , Doença Crônica , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Proteínas Virais Reguladoras e Acessórias/genética
14.
PLoS Pathog ; 16(4): e1008450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353080

RESUMO

The primary reservoir for HIV is within memory CD4+ T cells residing within tissues, yet the features that make some of these cells more susceptible than others to infection by HIV is not well understood. Recent studies demonstrated that CCR5-tropic HIV-1 efficiently enters tissue-derived memory CD4+ T cells expressing CD127, the alpha chain of the IL7 receptor, but rarely completes the replication cycle. We now demonstrate that the inability of HIV to replicate in these CD127-expressing cells is not due to post-entry restriction by SAMHD1. Rather, relative to other memory T cell subsets, these cells are highly prone to undergoing latent infection with HIV, as revealed by the high levels of integrated HIV DNA in these cells. Host gene expression profiling revealed that CD127-expressing memory CD4+ T cells are phenotypically distinct from other tissue memory CD4+ T cells, and are defined by a quiescent state with diminished NFκB, NFAT, and Ox40 signaling. However, latently-infected CD127+ cells harbored unspliced HIV transcripts and stimulation of these cells with anti-CD3/CD28 reversed latency. These findings identify a novel subset of memory CD4+ T cells found in tissue and not in blood that are preferentially targeted for latent infection by HIV, and may serve as an important reservoir to target for HIV eradication efforts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-7/genética , Latência Viral , Replicação Viral
15.
J Infect Dis ; 222(4): 655-660, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32236405

RESUMO

The majority of cells with latent human immunodeficiency virus 1 infection are located in lymphoid tissues that are difficult to access. In the current study, we used single-genome near-full-length proviral sequencing to evaluate intact and defective proviruses in blood and lymph node CD4 T cells enriched for specific functional polarizations. We observed minor variations between the frequencies of proviral sequences within individual CD4 T-cell subsets and across tissue compartments. However, we noted multiple clonal clusters of identical intact or defective proviral sequences from distinct compartments and CD4 T-cell subpopulations, suggesting frequent interchanges between viral reservoir cells in blood and tissues.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/sangue , HIV-1/genética , Linfonodos/virologia , Provírus/genética , Subpopulações de Linfócitos T/virologia , Antirretrovirais/uso terapêutico , Sequência de Bases , DNA Viral/sangue , Infecções por HIV/tratamento farmacológico , Humanos , Carga Viral
16.
Nat Commun ; 10(1): 2737, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227699

RESUMO

Little is known about the genotypic make-up of HIV-1 DNA genomes during the earliest stages of HIV-1 infection. Here, we use near-full-length, single genome next-generation sequencing to longitudinally genotype and quantify subtype C HIV-1 DNA in four women identified during acute HIV-1 infection in Durban, South Africa, through twice-weekly screening of high-risk participants. In contrast to chronically HIV-1-infected patients, we found that at the earliest phases of infection in these four participants, the majority of viral DNA genomes are intact, lack APOBEC-3G/F-associated hypermutations, have limited genome truncations, and over one year show little indication of cytotoxic T cell-driven immune selections. Viral sequence divergence during acute infection is predominantly fueled by single-base substitutions and is limited by treatment initiation during the earliest stages of disease. Our observations provide rare longitudinal insights of HIV-1 DNA sequence profiles during the first year of infection to inform future HIV cure research.


Assuntos
DNA Viral/genética , Evolução Molecular , Genoma Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Doença Aguda , Adulto , Fármacos Anti-HIV/uso terapêutico , Análise Mutacional de DNA , Feminino , Seguimentos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Mutação , Estudos Prospectivos , África do Sul , Carga Viral , Adulto Jovem
17.
J Clin Invest ; 129(3): 988-998, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30688658

RESUMO

Chromosomal integration of genome-intact HIV-1 sequences into the host genome creates a reservoir of virally infected cells that persists throughout life, necessitating indefinite antiretroviral suppression therapy. During effective antiviral treatment, the majority of these proviruses remain transcriptionally silent, but mechanisms responsible for viral latency are insufficiently clear. Here, we used matched integration site and proviral sequencing (MIP-Seq), an experimental approach involving multiple displacement amplification of individual proviral species, followed by near-full-length HIV-1 next-generation sequencing and corresponding chromosomal integration site analysis to selectively map the chromosomal positions of intact and defective proviruses in 3 HIV-1-infected individuals undergoing long-term antiretroviral therapy. Simultaneously, chromatin accessibility and gene expression in autologous CD4+ T cells were analyzed by assays for transposase-accessible chromatin using sequencing (ATAC-Seq) and RNA-Seq. We observed that in comparison to proviruses with defective sequences, intact HIV-1 proviruses were enriched for non-genic chromosomal positions and more frequently showed an opposite orientation relative to host genes. In addition, intact HIV-1 proviruses were preferentially integrated in either relative proximity to or increased distance from active transcriptional start sites and to accessible chromatin regions. These studies strongly suggest selection of intact proviruses with features of deeper viral latency during prolonged antiretroviral therapy, and may be informative for targeting the genome-intact viral reservoir.


Assuntos
Antirretrovirais/administração & dosagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/genética , Provírus/genética , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Cromossomos Humanos/virologia , Feminino , Infecções por HIV/metabolismo , HIV-1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Provírus/metabolismo , Fatores de Tempo
18.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30305354

RESUMO

The extent to which viral genetic context influences HIV adaptation to human leukocyte antigen (HLA) class I-restricted immune pressures remains incompletely understood. The Ugandan HIV epidemic, where major pandemic group M subtypes A1 and D cocirculate in a single host population, provides an opportunity to investigate this question. We characterized plasma HIV RNA gag, pol, and nef sequences, along with host HLA genotypes, in 464 antiretroviral-naive individuals chronically infected with HIV subtype A1 or D. Using phylogenetically informed statistical approaches, we identified HLA-associated polymorphisms and formally compared their strengths of selection between viral subtypes. A substantial number (32%) of HLA-associated polymorphisms identified in subtype A1 and/or D had previously been reported in subtype B, C, and/or circulating recombinant form 01_AE (CRF01_AE), confirming the shared nature of many HLA-driven escape pathways regardless of viral genetic context. Nevertheless, 34% of the identified HLA-associated polymorphisms were significantly differentially selected between subtypes A1 and D. Experimental investigation of select examples of subtype-specific escape revealed distinct underlying mechanisms with important implications for vaccine design: whereas some were attributable to subtype-specific sequence variation that influenced epitope-HLA binding, others were attributable to differential mutational barriers to immune escape. Overall, our results confirm that HIV genetic context is a key modulator of viral adaptation to host cellular immunity and highlight the power of combined bioinformatic and mechanistic studies, paired with knowledge of epitope immunogenicity, to identify appropriate viral regions for inclusion in subtype-specific and universal HIV vaccine strategies.IMPORTANCE The identification of HIV polymorphisms reproducibly selected under pressure by specific HLA alleles and the elucidation of their impact on viral function can help identify immunogenic viral regions where immune escape incurs a fitness cost. However, our knowledge of HLA-driven escape pathways and their functional costs is largely limited to HIV subtype B and, to a lesser extent, subtype C. Our study represents the first characterization of HLA-driven adaptation pathways in HIV subtypes A1 and D, which dominate in East Africa, and the first statistically rigorous characterization of differential HLA-driven escape across viral subtypes. The results support a considerable impact of viral genetic context on HIV adaptation to host HLA, where HIV subtype-specific sequence variation influences both epitope-HLA binding and the fitness costs of escape. Integrated bioinformatic and mechanistic characterization of these and other instances of differential escape could aid rational cytotoxic T-lymphocyte-based vaccine immunogen selection for both subtype-specific and universal HIV vaccines.


Assuntos
Técnicas de Genotipagem/métodos , Infecções por HIV/sangue , HIV-1/patogenicidade , Antígenos HLA/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Vacinas contra a AIDS , Genótipo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/imunologia , Antígenos HLA/sangue , Proteínas do Vírus da Imunodeficiência Humana/sangue , Humanos , Evasão da Resposta Imune , Imunidade Celular , Filogenia , Polimorfismo Genético , Uganda , Produtos do Gene gag do Vírus da Imunodeficiência Humana/sangue , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/sangue , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/sangue , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
19.
PLoS Pathog ; 14(9): e1007257, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180214

RESUMO

HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.


Assuntos
Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/patogenicidade , Antígenos HLA-C/genética , Sequência de Aminoácidos , Reservatórios de Doenças/virologia , Regulação para Baixo , Variação Genética , Genótipo , Infecções por HIV/virologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Evasão da Resposta Imune , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia
20.
J Clin Invest ; 128(9): 4074-4085, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30024859

RESUMO

HIV posttreatment controllers (PTCs) represent a natural model of sustained HIV remission, but they are rare and little is known about their viral reservoir. We obtained 1,450 proviral sequences after near-full-length amplification for 10 PTCs and 16 posttreatment noncontrollers (NCs). Before treatment interruption, the median intact and total reservoir size in PTCs was 7-fold lower than in NCs, but the proportion of intact, defective, and total clonally expanded proviral genomes was not significantly different between the 2 groups. Quantification of total but not intact proviral genome copies predicted sustained HIV remission as 81% of NCs, but none of the PTCs had a total proviral genome greater than 4 copies per million peripheral blood mononuclear cells (PBMCs). The results highlight the restricted intact and defective HIV reservoir in PTCs and suggest that total proviral genome burden could act as the first biomarker for identifying PTCs. Total and defective but not intact proviral copy numbers correlated with levels of cell-associated HIV RNA, activated NK cell percentages, and both HIV-specific CD4+ and CD8+ responses. These results support the concept that defective HIV genomes can lead to viral antigen production and interact with both the innate and adaptive immune systems.


Assuntos
Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , HIV-1/genética , Provírus/genética , Adulto , Fármacos Anti-HIV/uso terapêutico , Vírus Defeituosos/efeitos dos fármacos , Vírus Defeituosos/genética , Vírus Defeituosos/isolamento & purificação , Reservatórios de Doenças/virologia , Feminino , Genoma Viral , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Provírus/efeitos dos fármacos , Provírus/isolamento & purificação , Carga Viral/efeitos dos fármacos , Carga Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA