Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 6807-6814, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487233

RESUMO

Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.

2.
Sci Adv ; 9(22): eadf7426, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267366

RESUMO

Al-Zn-Mg alloys are widely used in the transportation industry owing to their high strength-to-weight ratio. In these alloys, the main strengthening mechanism is precipitation hardening that occurs because of the formation of nano-sized precipitates. Herein, an interfacial structure of η4 precipitates, one of the main precipitates in these alloys, is revealed using aberration-corrected scanning transmission electron microscopy and first-principles calculations. These precipitates exhibit a pseudo-periodic steps and bridges. The results of this study demonstrate that the peculiar interface structure of η4/Al relieves the strain energy of η4 precipitates thus stabilizing them. The atomistic role of this interfacial structure in the nucleation and growth of the precipitates is elucidated. This study paves the way for tailoring the mechanical properties of alloys by controlling their precipitation kinetics.

3.
Small Methods ; 6(11): e2200880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250995

RESUMO

Ruddlesden-Popper oxides (A2 BO4 ) have attracted significant attention regarding their potential application in novel electronic and energy devices. However, practical uses of A2 BO4 thin films have been limited by extended defects such as out-of-phase boundaries (OPBs). OPBs disrupt the layered structure of A2 BO4 , which restricts functionality. OPBs are ubiquitous in A2 BO4 thin films but inhomogeneous interfaces make them difficult to suppress. Here, OPBs in A2 BO4 thin films are suppressed using a novel method to control the substrate surface termination. To demonstrate the technique, epitaxial thin films of cuprate superconductor La2- x Srx CuO4 (x = 0.15) are grown on surface-reconstructed LaSrAlO4 substrates, which are terminated with self-limited perovskite double layers. To date, La2- x Srx CuO4 thin films are grown on LaSrAlO4 substrates with mixed-termination and exhibit multiple interfacial structures resulting in many OPBs. In contrast, La2- x Srx CuO4 thin films grown on surface-reconstructed LaSrAlO4 substrates energetically favor only one interfacial structure, thus inhibiting OPB formation. OPB-suppressed La2- x Srx CuO4 thin films exhibit significantly enhanced superconducting properties compared with OPB-containing La2- x Srx CuO4 thin films. Defect engineering in A2 BO4 thin films will allow for the elimination of various types of defects in other complex oxides and facilitate next-generation quantum device applications.

4.
J Phys Chem Lett ; 12(34): 8430-8439, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436917

RESUMO

Polymorph conversion of transition metal dichalcogenides (TMDs) offers intriguing material phenomena that can be applied for tuning the intrinsic properties of 2D materials. In general, group VIB TMDs can have thermodynamically stable 2H phases and metastable 1T/T' phases. Herein, we report key principles to apply carbon monoxide (CO)-based gas-solid reactions for a universal polymorph conversion of group VIB TMDs without forming undesirable compounds. We found that the process conditions are strongly dependent on the reaction chemical potential of cations in the TMDs, which can be predicted by thermodynamic calculations, and that polymorphic conversion is triggered by S vacancy (VS) formation. Furthermore, we conducted DFT calculations for the reaction barriers of VS formation and S diffusion to reveal the polymorph conversion mechanism of WS2 and compared it with that of MoS2. We believe that phase engineering 2D materials via thermodynamically designed gas-solid reactions could be functionally used to achieve defect-related nanomaterials.

5.
Nanotechnology ; 32(38)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34130260

RESUMO

For graphene-based 2D materials, charge transfer at the interface between graphene and ferromagnetic metal leads to many intriguing phenomena. However, because of the unidirectional spin orientation in ferromagnetic transition metals, interface interaction plays a detrimental role in diminishing the magnetic parameters on 2D surfaces. To overcome this issue, we have synthesized ultrathin 2D weak antiferromagneticß-NiOOH layers on a graphene surface. By exploiting the charge transfer effect and tuning the thickness of the thinß-NiOOH layers, conversion of ferromagnetism along with giant coercivity and the thermo-remnant magnetic memory effect were observed. As antiferromagnets have two spin orientations, transfer of charge at the interface breaks the nullifying effect of zero magnetization in antiferromagnets and the combined system behaves like a 2D ferrimagnet. Whenever, the sandwich structure ofß-NiOOH/graphene/ß-NiOOH is formed, it also shows interlayer exchange coupling those results in huge exchange bias and anomalous temperature dependence of coercivity. Due to the strong exchange interaction between the layers, the combined system also shows a robust temperature-based memory effect. Spin-polarized density functional theory was also calculated to confirm the interface interaction and its quantitative evaluation by means of Bader charge analysis and charge-density mapping.

6.
Nat Commun ; 12(1): 3765, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155218

RESUMO

For steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas-solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at -0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.

7.
Small ; 17(23): e2100693, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960117

RESUMO

Precise controlled filling of point vacancies in hBN with carbon atoms is demonstrated using a focused electron beam method, which guides mobile C atoms into the desired defect site. Optimization of the technique enables the insertion of a single C atom into a selected monovacancy, and preferential defect filling with sub-2 nm accuracy. Increasing the C insertion process leads to thicker 3D C nanodots seeded at the hBN point vacancy site. Other light elements are also observed to bind to hBN vacancies, including O, opening up a wide range of complex defect structures that include B, C, N, and O atoms. The ability to selectively fill point vacancies in hBN with C atoms provides a pathway for creating non-hydrogenated covalently bonded C molecules embedded in the insulating hBN.

8.
Nanotechnology ; 32(2): 025704, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32947266

RESUMO

Point defects in freestanding graphene monolayers such as monovacancies (MVs) and divacancies have been investigated at atomic scale with aberration-corrected transmission electron microscopy and theoretical calculations. In general, these defects can be formed simply by the absence of individual carbon atoms and carbon bond reconstructions in the graphene lattice under electron and ion irradiation. However, in this study, we found that oxygen and hydrogen atoms can be involved in the formation of these point defects caused by the simultaneous detachment of oxygen-carbon atoms. Here we report the effect of the oxygen and hydrogen atoms on the graphene surface forming the point defects under electron beam irradiation, and their role of stabilizing other MVs when composed of 13-5 ring pairs. In addition, theoretical analysis using density functional theory calculations demonstrates that the participating atoms can form the point defects in the intermediate states and stabilize 13-5 ring pairs under electron beam irradiation.

9.
Sci Adv ; 6(24): eaba4942, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577521

RESUMO

The structural transformations of graphene defects have been extensively researched through aberration-corrected transmission electron microscopy (AC-TEM) and theoretical calculations. For a long time, a core concept in understanding the structural evolution of graphene defects has been the Stone-Thrower-Wales (STW)-type bond rotation. In this study, we show that undercoordinated atoms induce bond formation and breaking, with much lower energy barriers than the STW-type bond rotation. We refer to them as mediator atoms due to their mediating role in the breaking and forming of bonds. Here, we report the direct observation of mediator atoms in graphene defect structures using AC-TEM and annular dark-field scanning TEM (ADF-STEM) and explain their catalytic role by tight-binding molecular dynamics (TBMD) simulations and image simulations based on density functional theory (DFT) calculations. The study of mediator atoms will pave a new way for understanding not only defect transformation but also the growth mechanisms in two-dimensional materials.

10.
ACS Nano ; 14(5): 6034-6042, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32324376

RESUMO

Scanning moiré fringe (SMF) is a widely utilized technique for the precise measurement of the strain field in semiconductor transistors and heterointerfaces. With the growing challenges of traditional chip scaling, two-dimensional (2D) materials turn out to be ideal candidates for incorporation into semiconductor devices. Therefore, a method to efficiently locate defects and grain boundaries in 2D materials is highly essential. Here, we present a demonstration of using the SMF method to locate the domain boundaries at the nearly coherent interfaces with sub-angstrom spatial resolution under submicron fields of views. The strain field of small angle grain boundary and lateral heterojunction are instantaneously found and precisely determined by a quick SMF method without any atomic resolution images.

11.
RSC Adv ; 10(12): 6822-6830, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493897

RESUMO

Amorphous carbon (a-C) films have attracted significant attention due to their reliable structures and superior mechanical, chemical and electronic properties, making them a strong candidate as an etch hard mask material for the fabrication of future integrated semiconductor devices. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations were performed to investigate the energetics, structure, and mechanical properties of the a-C films with an increasing sp3 content by adjusting the atomic density or hydrogen content. A drastic increase in the bulk modulus is observed by increasing the atomic density of the a-C films, which suggests that it would be difficult for the films hardened by high atomic density to relieve the stress of the individual layers within the overall stack in integrated semiconductor devices. However, the addition of hydrogen into the a-C films has little effect on increasing the bulk modulus even though the sp3 content increases. For the F blocking nature, the change in the sp3 content by both atomic density and H concentration makes the diffusion barrier against the F atom even higher and suppresses the F diffusion, indicating that the F atom would follow the diffusion path passing through the sp2 carbon and not the sp3 carbon due to the significantly high barrier. For the material design of a-C films with adequate doped characteristics, our results can provide a new straightforward strategy to tailor the a-C films with excellent mechanical and other novel physical and chemical properties.

12.
Sci Rep ; 9(1): 18961, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831828

RESUMO

Amorphous carbon (a-C) films have received significant attention due to their reliable structures and superior mechanical, chemical and electronic properties, making them a strong candidate as a hard mask material. We investigated the energetics, structure, and electronic and mechanical properties of the B, N, and Cl doped a-C films based on density functional theory (DFT) calculation. Our DFT calculated results clearly show that introducing B and N atoms into a-C films makes the bulk modulus slightly reduced as a function of the concentration increases. Interestingly, it is noted that introducing Cl atom into a-C films makes the bulk modulus is drastically reduced, which suggests that the films softened by Cl doping would relieve residual stress of the individual layers within the overall stacks in integrated semiconductor devices. These requirements become more important and increasingly more challenging to meet as the device integrity grows. In the perspective of F blocking nature, B doping into a-C films pulls in and captures the F atom due to the strong bonding nature of B‒F bond than C-F bond. Unlike the B doping, for the N doped a-C film, F atom has extremely large diffusion barrier of 4.92 eV. This large diffusion barrier is attributed to the electrostatically repulsive force between both atoms. The Cl doped a-C film shows consistently the similar results with the N doped a-C film because both N and Cl atoms have large electro-negativity, which causes F atom to push out. If one notes the optimized designing with the suitable doped characteristics, our results could provide a new straightforward strategy to tailor the a-C films with excellent mechanical and other novel physical and chemical properties.

13.
ACS Nano ; 13(10): 12162-12170, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31553564

RESUMO

Platinum atomic layers grown on graphene were investigated by atomic resolution transmission electron microscopy (TEM). These TEM images reveal the epitaxial relationship between the atomically thin platinum layers and graphene, with two optimal epitaxies observed. The energetics of these epitaxies influences the grain structure of the platinum film, facilitating grain growth via in-plane rotation and assimilation of neighbor grains, rather than grain coarsening from the movement of grain boundaries. This growth process was enabled due to the availability of several possible low-energy intermediate states for the rotating grains, the Pt-Gr epitaxies, which are minima in surface energy, and coincident site lattice grain boundaries, which are minima in grain boundary energy. Density functional theory calculations reveal a complex interplay of considerations for minimizing the platinum grain energy, with free platinum edges also having an effect on the relative energetics. We thus find that the platinum atomic layer grains undergo significant reorientation to minimize interface energy (via epitaxy), grain boundary energy (via low-energy orientations), and free edge energy. These results will be important for the design of two-dimensional graphene-supported platinum catalysts and obtaining large-area uniform platinum atomic layer films and also provide fundamental experimental insight into the growth of heteroepitaxial thin films.

14.
ACS Nano ; 13(2): 2379-2388, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673212

RESUMO

We present an atomic level study of reversible cyclization processes in suspended nanoconstricted regions of graphene that form linear carbon chains (LCCs). Before the nanoconstricted region reaches a single linear carbon chain (SLCC), we observe that a double linear carbon chain (DLCC) structure often reverts back to a ribbon of sp2 hybridized oligoacene rings, in a process akin to the Bergman rearrangement. When the length of the DLCC system only consists of ∼5 atoms in each LCC, full recyclization occurs for all atoms present, but for longer DLCCs we find that only single sections of the chain are modified in their bonding hybridization and no full ring closure occurs along the entire DLCCs. This process is observed in real time using aberration-corrected transmission electron microscopy and simulated using density functional theory and tight binding molecular dynamics calculations. These results show that DLCCs are highly sensitive to the adsorption of local gas molecules or surface diffusion impurities and undergo structural modifications.

15.
ACS Appl Mater Interfaces ; 10(48): 41487-41496, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398854

RESUMO

Solid-phase epitaxy (SPE), a solid-state phase transition of materials from an amorphous to a crystalline phase, is a convenient crystal growing technique. In particular, SPE can be used to grow α-Al2O3 epitaxially with a novel structure that provides an effective substrate for improved performance of light-emitting diodes (LEDs). However, the inevitable two-step phase transformation through the γ-Al2O3 phase hinders the expected improved crystallinity of α-Al2O3, and thereby further enhancement of LED performance. Herein, we provide a fundamental understanding of the SPE growth mechanism from amorphous to metastable γ-Al2O3 using transmission electron microscopy (TEM) and density functional theory (DFT) calculations. The nanobeam precession electron diffraction technique enabled clear visualization of the double-positioning domain distribution in the SPE γ-Al2O3 film and emphasized the need for careful selection of the viewing directions for any investigation of double-positioning domains. Void and stacking fault defects further investigated by high-resolution scanning TEM (STEM) analyses revealed how double-positioning domains and other SPE growth behaviors directly influence the crystallinity of SPE films. Additionally, DFT calculations revealed the origins of SPE growth behavior. The double-positioning γ-Al2O3 domains randomly nucleate from the α-Al2O3 substrate regardless of the α-Al2O3 termination layer, but the large energy requirement for reversal of the γ-Al2O3 stacking sequence prevents it from switching the domain type during the crystal growth. We expect that this study will be useful to improve the crystallinity of SPE γ- and α-Al2O3 films.

16.
Nanoscale ; 10(40): 19212-19219, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30303224

RESUMO

The recent emergence of vertically stacked van der Waals (vdW) heterostructures provides new opportunities for these materials to be employed in a wide range of novel applications. Understanding the interlayer coupling in the stacking geometries of the heterostructures and its effect on the resultant material properties is particularly important for obtaining materials with desirable properties. Here, we report that the atomic bonding between stacked layers and thereby the interlayer properties of the vdW heterostructures can be well tuned by the substrate surface defects using WS2 flakes directly grown on graphene. We show that the defects of graphene have no significant effect on the crystal structure or the quality of the grown WS2 flakes; however, they have a strong influence on the interlayer interactions between stacked layers, thus affecting the layer deformability, thermal stability, and physical and electrical properties. Our experimental and computational investigations also reveal that WS2 flakes grown on graphene defects form covalent bonds with the underlying graphene via W atomic bridges (i.e., formation of larger overlapping hybrid orbitals), enabling these flakes to exhibit different intrinsic properties, such as higher conductivity and improved contact characteristics than heterostructures that have vdW interactions with graphene. This result emphasizes the importance of understanding the interlayer coupling in the stacking geometries and its correlation effect for designing desirable properties.

17.
Adv Mater ; 30(30): e1707260, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882243

RESUMO

Following the celebrated discovery of graphene, considerable attention has been directed toward the rich spectrum of properties offered by van der Waals crystals. However, studies have been largely limited to their 2D properties due to lack of 1D structures. Here, the growth of high-yield, single-crystalline 1D nanobelts composed of transition metal ditellurides at low temperatures (T ≤ 500 °C) and in short reaction times (t ≤ 10 min) via the use of tellurium-rich eutectic metal alloys is reported. The synthesized semimetallic 1D products are highly pure, stoichiometric, structurally uniform, and free of defects, resulting in high electrical performances. Furthermore, complete compositional tuning of the ternary ditelluride nanobelts is achieved with suppressed phase separation, applicable to the creation of unprecedented low-dimensional materials/devices. This approach may inspire new growth/fabrication strategies of 1D layered nanostructures, which may offer unique properties that are not available in other materials.

18.
RSC Adv ; 8(38): 21164-21173, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539938

RESUMO

For the development of the future ultrahigh-scale integrated memory devices, a uniform tungsten (W) gate deposition process with good conformal film is essential for improving the conductivity of the W gate, resulting in the enhancement of device performance. As the memory devices are further scaled down, uniform W deposition becomes more difficult because of the experimental limitations of the sub-nanometer scale deposition even with atomic layer deposition (ALD) W processes. Even though it is known that the B2H6 dosing process plays a key role in the deposition of the ALD W layer with low resistivity and in the removal of residual fluorine (F) atoms, the roles of H2 and N2 treatments used in the ALD W process have not yet been reported. To understand the detailed ALD W process, we have investigated the effects of H2 and N2 treatment on TiN surfaces for the B2H6 dosing process using first-principles density functional theory (DFT) calculations. In our DFT calculated results, H2 treatment on the TiN surfaces causes the surfaces to become H-covered TiN surfaces, which results in lowering the reactivity of the B2H6 precursor since the overall reactions of the B2H6 on the H-covered TiN surfaces are energetically less favorable than the TiN surfaces. As a result, an effect of the H2 treatment is to decrease the reactivity of the B2H6 molecule on the TiN surface. However, N2 treatment on the Ti-terminated TiN (111) surface is more likely to make the TiN surface become an N-terminated TiN (111) surface, which results in making a lot of N-terminated TiN (111) surfaces, having a very reactive nature for B2H6 bond dissociation. As a result, the effect of N2 treatment serves as a catalyst to decompose B2H6. From the deep understanding of the effect of H2 and N2 during the B2H6 dosing process, the use of proper gas treatment is required for the improvement of the W nucleation layers.

19.
RSC Adv ; 8(68): 39039-39046, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558318

RESUMO

We investigated the overall ALD reaction mechanism for W deposition on TiN surfaces based on DFT calculation as well as the detailed dissociative reactions of WF6. Our calculated results suggest that the overall reactions of the WF6 on the B-covered TiN surfaces are energetically much more favorable than the one on the TiN surfaces, which means that the high reactivity of WF6 with the B-covered TiN surface is attributed to the presence of B-covered surface made by B2H6 molecules. As a result, an effect of the B2H6 flow serves as a catalyst to decompose WF6 molecules. Two additional reaction processes right after WF6 bond dissociation, such as W substitution and BF3 desorption, were also explored to clearly understand the detailed reactions that can occur by WF6 flow. At the first additional reaction process, W atoms can be substituted into B site and covered on the TiN surfaces due to the stronger bonding nature of W with the TiN surface than B atoms. At the second additional reaction process, remaining atoms, such as B and F, can be easily desorbed as by-product, that is, BF3 because BF3 desorption is an energetically favorable reaction with a low activation energy. Furthermore, we also investigated the effect of H2 post-treatment on W-covered TiN surface in order to remove residual F adatoms, which are known to cause severe problems that extremely degrade the characteristics of memory devices. It was found that both H2 dissociative reaction and HF desorption can occur sufficiently well under somewhat high temperature and H2 ambience, which is confirmed by our DFT results and previously reported experimental results. These results imply that the understanding of the role of gas molecules used for W deposition gives us insight into improving the W ALD process for future memory devices.

20.
Adv Mater ; 29(42)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28977703

RESUMO

An unconventional phase-change memory (PCM) made of In2 Se3 , which utilizes reversible phase changes between a low-resistance crystalline ß phase and a high-resistance crystalline γ phase is reported for the first time. Using a PCM with a layered crystalline film exfoliated from In2 Se3 crystals on a graphene bottom electrode, it is shown that SET/RESET programmed states form via the formation/annihilation of periodic van der Waals' (vdW) gaps (i.e., virtual vacancy layers) in the stack of atomic layers and the concurrent reconfiguration of In and Se atoms across the layers. From density functional theory calculations, ß and γ phases, characterized by octahedral bonding with vdW gaps and tetrahedral bonding without vdW gaps, respectively, are shown to have energy bandgap value of 0.78 and 1.86 eV, consistent with a metal-to-insulator transition accompanying the ß-to-γ phase change. The monolithic In2 Se3 layered film reported here provides a novel means to achieving a PCM based on melting-free, low-entropy phase changes in contrast with the GeTe-Sb2 Te3 superlattice film adopted in interfacial phase-change memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA