Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408502

RESUMO

The activation of NLRP3 results in the assembly of inflammasome that regulates caspase-1 activation and the subsequent secretion of bioactive interleukin (IL)-1ß. Excessive activation of the NLRP3 inflammasome is mechanistically linked to diverse pathophysiological conditions, including airway inflammation. Here, we discovered that Curcuma phaeocaulis can suppress caspase-1 activation and processing of pro-IL-1ß into mature cytokine in macrophages stimulated with NLRP3 inflammasome activators, such as SiO2 or TiO2 nanoparticles. Furthermore, in the bronchoalveolar lavage fluids of animals administered the nanoparticles, the in vitro effects of C. phaeocaulis translated into a decrease in IL-1ß levels and cell infiltration. Demethoxycurcumin (DMC) and curcumin were found to be responsible for the inflammasome inhibitory activity of C. phaeocaulis. Interestingly, in contrast to the previously reported higher antioxidant- and NFκB-inhibitory activities of curcumin, DMC exhibited approximately two-fold stronger potency than curcumin against nanoparticle induced activation of NLRP3 inflammasome. In the light of these results, both compounds seem to act independently of their antioxidant- and NFκB-inhibitory properties. Although how C. phaeocaulis inhibits nanoparticle-activated NLRP3 inflammasome remains to be elucidated, our results provide a basis for further research on C. phaeocaulis extract as an anti-inflammatory agent for the treatment of disorders associated with excessive activation of NLRP3 inflammasome.


Assuntos
Curcumina , Nanopartículas , Animais , Antioxidantes/farmacologia , Caspase 1 , Caspases , Curcuma , Curcumina/farmacologia , Inflamassomos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/farmacologia , Macrófagos , Camundongos , NF-kappa B/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Dióxido de Silício/farmacologia
2.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917810

RESUMO

Schwann cell differentiation involves a dynamic interaction of signaling cascades. However, much remains to be elucidated regarding the function of signaling molecules that differ depending on the context in which the molecules are engaged. Here, we identified a small molecule, dabrafenib, which promotes Schwann cell differentiation in vitro and exploited this compound as a pharmacological tool to understand the molecular mechanisms regulating Schwann cell differentiation. The results indicated that dabrafenib inhibited ERK phosphorylation and enhanced ErbB2 autophosphorylation and Akt phosphorylation, and the effects of dabrafenib on ErbB2 and Akt phosphorylation were phenocopied by pharmacological inhibition of the MEK-ERK signaling pathway. However, the small molecule inhibitors of MEK and ERK had no effect on the expression of Oct6 and EGR2, which are key transcription factors that drive Schwann cell differentiation. In addition, pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) almost completely interfered with dabrafenib-induced Schwann cell differentiation. These results suggest that the ErbB2-PI3K-Akt axis is required for the induction of Schwann cell differentiation by dabrafenib in vitro. Although additional molecules targeted by dabrafenib remain to be identified, our data provides insights into the crosstalk that exists between the MEK-ERK signaling pathway and the PI3K-Akt axis in Schwann cell differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oximas/farmacologia , Células de Schwann/citologia , Animais , Diferenciação Celular/genética , Imidazóis/química , Oximas/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo
3.
Phytother Res ; 34(4): 788-795, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31782210

RESUMO

Neuropathic pain is associated with an increased sensitivity to painful stimuli or abnormal sensitivity to otherwise innocuous stimuli. However, in addition to adverse effects, currently available drugs have shown limited response in patients with neuropathic pain, which provides a rationale to explore new drug classes acting on novel targets and with better efficacy and safety profiles. Here, we found that saikosaponins potently inhibit agonist-induced activation of the transient receptor potential A1 (TRPA1) channel, which has been reported to mediate neuropathic pain by sensing a variety of chemical irritants. Molecular docking and site-directed mutagenesis analyses suggested that saikosaponins bind to the hydrophobic pocket in TRPA1 near the Asn855 residue, which, when mutated to Ser, was previously associated with enhanced pain perception in humans. In support of these findings, saikosaponin D significantly attenuated agonist-induced nociceptive responses and vincristine-induced mechanical hypersensitivity in mice. These results indicate that saikosaponins are TRPA1 antagonists and provide a basis for further elaboration of saikosaponin derivatives for the development of new therapeutics for neuropathic pain.


Assuntos
Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Neuralgia/diagnóstico , Neuralgia/tratamento farmacológico , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Medição da Dor , Saponinas/química , Saponinas/isolamento & purificação , Saponinas/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo
4.
Planta Med ; 85(9-10): 766-773, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31167297

RESUMO

Osteoporosis is a clinical condition characterized by low bone strength that leads to an increased risk of fracture. Strategies for the treatment of osteoporosis involve inhibition of bone resorption by osteoclasts and an increase of bone formation by osteoblasts. Here, we identified the extract derived from the stem part of Edgeworthia papyrifera that enhanced differentiation of MC3T3-E1 cells to osteoblast-like cells and inhibited osteoclast differentiation of RAW 264.7 cells in vitro. In support of our observation, rutin and daphnoretin, which were previously reported to inhibit osteoclast differentiation, were identified in E. papyrifera extract. In an animal model of osteoporosis, the ovariectomy-induced increases in bone resorption biomarkers such as pyridinoline and tartrate-resistant acid phosphatase were significantly reduced by E. papyrifera extract administration at 25.6 and 48.1%, respectively. Furthermore, the ovariectomy-induced bone loss in animal models of osteoporosis was significantly prevented by the administration of E. papyrifera in our study. Taking these observations into account, we suggest that E. papyrifera is an interesting candidate for further exploration as an anti-osteoporotic agent.


Assuntos
Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Thymelaeaceae/química , Fosfatase Alcalina/metabolismo , Aminoácidos/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Osteoporose/etiologia , Extratos Vegetais/análise , Células RAW 264.7 , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA