Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(51): 18678-18695, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095583

RESUMO

Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.

2.
J Phys Chem Lett ; 14(39): 8837-8845, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751387

RESUMO

CsPbBr3 perovskite nanocrystals (CNCs) were densely anchored on multiwalled carbon nanotubes (MWNTs) via a nanoseeding intermediate stage, in which lead-based nuclei are formed on the nanotube surface. After the formation of the intermediate, a cesium precursor was added to promote the growth of CNCs from the surface nuclei and to thereby obtain CNC-decorated MWNT nanohybrids (CMNHs). The morphology and properties of the CMNHs were determined by the reaction temperature employed during their synthesis. Importantly, the use of MWNTs promoted the formation of larger CNCs that emitted intense green light and modified the electronic structure and bandgap energy of the CNCs. Consequently, the CMNHs could function as optoelectronic transducers and exhibit a "turn-on" photocurrent response when exposed to UV light of narrow specific-range wavelengths. In a novel approach for preventing counterfeit products, the CMNHs were used as a light-emitting black ink to create quick-response codes with fake pixels.

3.
Adv Mater ; 35(17): e2210749, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739656

RESUMO

The crystallization of nanocrystal building blocks into artificial superlattices has emerged as an efficient approach for tailoring the nanoscale properties and functionalities of novel devices. To date, ordered arrays of colloidal metal halide nanocrystals have mainly been achieved by using post-synthetic strategies. Here, a rapid and direct liquid-phase synthesis is presented to achieve a highly robust crystallization of luminescent metal halide nanocrystals into perfect face-centered-cubic (FCC) superlattices on the micrometer scale. The continuous growth of individual nanocrystals is observed within the superlattice, followed by the disassembly of the superlattices into individually dispersed nanocrystals owing to the highly repulsive interparticle interactions induced by large nanocrystals. Transmission electron microscopy characterization reveals that owing to an increase in solvent entropy, the structure of the superlattices transforms from FCC to hexagonal close-packed (HCP) and the nanocrystals disassemble. The FCC superlattice exhibits a single and slightly redshifted emission, due to the reabsorption-free property of the building block units. Compared to individual nanocrystals, the superlattices have three times higher quantum yield with improved environmental stability, making them ideal for use as ultrabright blue-light emitters. This study is expected to facilitate the creation of metamaterials with ordered nanocrystal structures and their practical applications.

4.
Small ; 18(42): e2203633, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108130

RESUMO

Herein, a sequential gas-phase process involving air jet milling followed by chemical vapor deposition (CVD), is demonstrated to be an efficient strategy for the fabrication of heterolayered 2D nanohybrids (2DNHs) decorated with nanocatalysts. Tens of grams of the nanohybrids, which is a substantial quantity at the laboratory scale, are produced in the absence of solvents and water, and without the need for an extra purification procedure. Air jet milling enables the development of binary/ternary heterolayered structures consisting of graphene, WSe2 , and/or MoS2 via the gas-phase co-exfoliation of their bulk counterparts. Based on the X-ray photoelectron and Raman spectroscopy data, the heterolayers of the 2DNHs exert chemical and electronic effects on each other, while diminishing the interactions between same-component layers. Moreover, the electrochemically active surface area increases by >190% and the charge transfer resistance decreases by >35%. CVD is performed to introduce Pt and Ru nanoparticles with diameters of a few nanometers as additional electrocatalysts into the 2DNHs. The nanocatalyst-decorated 2DNHs show excellent performance for the production of hydrogen and oxygen gases in water-splitting cells. Notably, the proposed all-gas-phase processes allow for the large-scale production of functional 2DNHs with minimal negative environmental impact, which is crucial for the commercialization of nanomaterials.


Assuntos
Doenças Cardiovasculares , Grafite , Humanos , Água , Grafite/química , Molibdênio , Hidrogênio , Gases , Oxigênio/química , Solventes
5.
Small ; 17(18): e2007775, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33739582

RESUMO

A simple, scalable, surfactant-in-polymer templating approach is demonstrated to create controlled long-range secondary substructures in a primary structure. A metal bis(2-ethylhexyl) sulfosuccinate (MAOT) as the surfactant is shown to be capable of serving as a sacrificial template and metal precursor in carbon nanofibers. The low interfacial tension and controllable dimensions of the MAOT are maintained in the solid-phase polymer, even during electrospinning and heat-treatment processes, allowing for the long-range uniform formation of substructures in the nanofibers. The MAOT content is found to be a critical parameter for tailoring the diameter of the nanofibers and their textural properties, such as size and volume of interior pores. The metal counterion species in the MAOT determine the introduction of metallic phases in the nanofiber interior. The incorporation of MAOT with Na as the counterion into the polymer phase leads to the formation of a built-in pore structure in the nanofibers. In contrast, MAOT with Fe as a counterion generates unique iron-in-pore substructures in the nanofibers (FeCNFs). The FeCNFs exhibit outstanding charge storage and water splitting performances. As a result, the MAOT-in-polymer templating approach can be extended to combinations of various metal precursors and thus create desirable functionalities for different target applications.

6.
Nanoscale ; 12(25): 13351-13359, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32572409

RESUMO

The functionalization of nanocarbon materials such as graphene has attracted considerable attention over the past decades. In this work, we designed and synthesized a unique N-heterocyclic carbene compound with a pyrene tail group (NHCp) to investigate how carbene species can be used for the functionalization of graphene. Although the carbene moiety of NHCp has the ability to covalently bond to graphene, the pyrene tail can noncovalently interact with graphene and allows monitoring its surrounding microenvironment. The major characteristics of the resulting nanohybrids were highly dependent on the type of graphene and the NHCp-to-graphene weight ratio. Importantly, despite the covalent functionalization of graphene, an anomalous decrease in the intensity of the Raman D peak and improved conductivity were observed for the nanohybrids. It was found that the covalent bond of NHCp to the graphene edge may allow the hybridization of their orbitals, which affects electronic energy levels and alters the double resonance process that originates the D peak at the edge defect. Importantly, the NHCp compound can act as a π acceptor (not just as a σ donor) via the NHCp-graphene covalent bridge. This is the first report showing that the concept of π-backdonation can be realized in two-dimensional materials, such as graphene, and rationally designed carbene molecules can functionalize graphene without losing their beneficial sp2 hybridization characteristics.

7.
Nat Commun ; 11(1): 1324, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165623

RESUMO

Insulating polymers have received little attention in electronic applications. Here, we synthesize a photoresponsive, amphiphilic block copolymer (PEO-b-PVBO) and further control the chain growth of the block segment (PVBO) to obtain different degrees of polymerization (DPs). The benzylidene oxazolone moiety in PEO-b-PVBO facilitated chain-conformational changes due to photoisomerization under visible/ultraviolet (UV) light illumination. Intercalation of the photoresponsive but electrically insulating PEO-b-PVBO into graphene sheets enabled electrical monitoring of the conformational change of the block copolymer at the molecular level. The current change at the microampere level was proportional to the DP of PVBO, demonstrating that the PEO-b-PVBO-intercalated graphene nanohybrid (PGNH) can be used in UV sensors. Additionally, discrete signals at the nanoampere level were separated from the first derivative of the time-dependent current using the fast Fourier transform (FFT). Analysis of the harmonic frequencies using the FFT revealed that the PGNH afforded sawtooth-type current flow mediated by Coulomb blockade oscillation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA