Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 16(2): 1660-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433641

RESUMO

Temperature-programmed reduction using H2 (H2-TPR) and CO (CO-TPR) was carried out to investigate the reduction and carburization behavior of nanocrystalline ferrihydrite-based Fe/Cu/K/SiO2 catalysts for use in Fischer-Tropsch synthesis (FTS). Unlike pure ferrihydrite, the ferrihydrite-based catalysts did not pass through the intermediate decomposition step of ferrihydrite (Fe9O2(OH)23) into hematite (a-Fe2O3) as they were reduced into magnetite (Fe3O4). This is attributed to the enhanced thermal stability induced by SiO2. For the ferrihydrite-based catalysts, the reduction of ferrihydrite into magnetite occurred in two stages because the reduction promoter, Cu, is not homogeneously distributed on the catalyst surfaces. The Cu-rich sites are likely to be reduced in the first stage, and the Cu-lean sites may be reduced in the second stage. After the ferrihydrite is reduced to magnetite, the reduction process of magnetite was similar to that for conventional hematite-based FTS catalysts: 'magnetite --> metallic iron' and 'magnetite --> wüstite (FeO) or fayalite (Fe2SiO4) --> metallic iron' in the H2 atmosphere; 'magnetite --> iron carbides' in the CO atmosphere.

2.
J Nanosci Nanotechnol ; 16(2): 2014-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433720

RESUMO

Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

3.
Nanoscale ; 7(40): 16616-20, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416550

RESUMO

Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10(-4) molCO gFe(-1) s(-1)) and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA