Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glia ; 69(5): 1110-1125, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314298

RESUMO

Vacuolar ATPase (v-ATPase) is the main proton pump that acidifies vesicles such as lysosomes. Disruption in the lysosomal localization of v-ATPase leads to lysosomal dysfunction, thus contributing to the pathogenesis of lysosomal storage disorders and neurodegenerative diseases such as Alzheimer's disease. Recent studies showed that increases in cyclic AMP (cAMP) levels acidify lysosomes and consequently enhance autophagy flux. Although the upregulation of v-ATPase function may be the key mechanism underlying the cAMP-mediated lysosomal acidification, it is unknown whether a mechanism independent of v-ATPase may be contributing to this phenomenon. In the present study, we modeled v-ATPase dysfunction in brain cells by blocking lysosomal acidification in cortical astrocytes through treatment with bafilomycin A1, a selective v-ATPase inhibitor. We observed that cAMP reversed the pH changes via the activation of protein kinase A; interestingly, cAMP also increased autophagy flux even in the presence of bafilomycin A1, suggesting the presence of an alternative route of proton entry. Notably, pharmacological inhibitors and siRNAs of H+ /K+ -ATPase markedly shifted the lysosomal pH toward more alkaline values in bafilomycin A1/cAMP-treated astrocytes, suggesting that H+ /K+ -ATPase may be the alternative route of proton entry for lysosomal acidification. Furthermore, the cAMP-mediated reversal of lysosomal pH was nullified in the absence of ZnT3 that interacts with H+ /K+ -ATPase. Our results suggest that the H+ /K+ -ATPase/ZnT3 complex is recruited to lysosomes in a cAMP-dependent manner and functions as an alternative proton pump for lysosomes when the v-ATPase function is downregulated, thus providing insight into the potential development of a new class of lysosome-targeted therapeutics in neurodegenerative diseases.


Assuntos
Astrócitos , Doenças Neurodegenerativas , ATPases Vacuolares Próton-Translocadoras , Astrócitos/metabolismo , Proteínas de Transporte , AMP Cíclico , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Macrolídeos , Prótons , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Elife ; 82019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799933

RESUMO

Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells. Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells, respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on autophagy. Further, we found that the cytokine interferon-ß (IFN-ß) can induce miR-1 expression in mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges. Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.


Assuntos
Autofagia , Caenorhabditis elegans/metabolismo , Interferon beta/metabolismo , MicroRNAs/metabolismo , Agregados Proteicos , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Proteína Huntingtina/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
Cell Metab ; 29(1): 192-201.e7, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30197302

RESUMO

The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell growth and metabolism. Leucine (Leu) activates mTORC1 and many have tried to identify the mechanisms whereby cells sense Leu in this context. Here we describe that the Leu metabolite acetyl-coenzyme A (AcCoA) positively regulates mTORC1 activity by EP300-mediated acetylation of the mTORC1 regulator, Raptor, at K1097. Leu metabolism and consequent mTORC1 activity are regulated by intermediary enzymes. As AcCoA is a Leu metabolite, this process directly correlates with Leu abundance, and does not require Leu sensing via intermediary proteins, as has been described previously. Importantly, we describe that this pathway regulates mTORC1 in a cell-type-specific manner. Finally, we observed decreased acetylated Raptor, and inhibited mTORC1 and EP300 activity in fasted mice tissues. These results provide a direct mechanism for mTORC1 regulation by Leu metabolism.


Assuntos
Acetilcoenzima A/metabolismo , Proteína p300 Associada a E1A/metabolismo , Leucina/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Neurobiol ; 53(10): 6620-6634, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26637326

RESUMO

Huntington's disease (HD) is a devastating neurodegenerative disorder, which is caused by the expression and aggregation of polyQ-expanded mutant huntingtin protein (mtHTT). While toxic mtHTT aggregates are primarily eliminated through autophagy, autophagy dysfunction is often observed in HD pathogenesis. Here, we show that ectodermal-neural cortex 1 (ENC1), a novel binding partner of sequestosome 1 (p62), negatively regulates autophagy under endoplasmic reticulum (ER) stress. We found that ER stress significantly increases the expression of ENC1 via inositol-requiring enzyme 1 (IRE1)-TNF receptor-associated factor 2 (TRAF2)-c-Jun N-terminal kinase (JNK) pathway. Ectopic expression of ENC1 alone induces the accumulation of detergent-resistant mtHTT aggregates and downregulation of ENC1 alleviates ER stress-induced mtHTT aggregation. Simultaneously, ER stress-induced impairment of autophagy flux is ameliorated by downregulation of ENC1. From immunoprecipitation and immunocytochemical assays, we found that ENC1 binds to p62 through its BTB and C-terminal Kelch (BACK) domain and this interaction is enhanced under ER stress. In particular, ENC1 preferentially interacts with the phosphorylated p62 at Ser403 during ER stress. Interestingly, ENC1 colocalizes with mtHTT aggregates and its C-terminal Kelch domain is required for interfering with the access of p62 to ubiquitinated mtHTT aggregates, thus inhibiting cargo recognition of p62. Accordingly, knockdown of ENC1 expression enhances colocalization of p62 with mtHTT aggregates. Consequently, ENC1 knockdown relieves death of neuronal cells expressing mtHTT under ER stress. These results suggest that ENC1 interacts with the phosphorylated p62 to impair autophagic degradation of mtHTT aggregates and affects cargo recognition failure under ER stress, leading to the accumulation and neurotoxicity of mtHTT aggregates.


Assuntos
Estresse do Retículo Endoplasmático , Proteína Huntingtina/toxicidade , Proteínas dos Microfilamentos/metabolismo , Proteínas Mutantes/toxicidade , Neuropeptídeos/metabolismo , Neurotoxinas/toxicidade , Proteínas Nucleares/metabolismo , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Fator 2 Associado a Receptor de TNF/metabolismo
5.
Neurobiol Dis ; 87: 19-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704708

RESUMO

In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates.


Assuntos
Caspases/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nootrópicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Sirolimo/farmacologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Proteínas tau/genética
6.
Sci Rep ; 5: 11559, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109405

RESUMO

Proteasome is a protein degradation complex that plays a major role in maintaining cellular homeostasis. Despite extensive efforts to identify protein substrates that are degraded through ubiquitination, the regulation of proteasome activity itself under diverse signals is poorly understood. In this study, we have isolated iRhom1 as a stimulator of proteasome activity from genome-wide functional screening using cDNA expression and an unstable GFP-degron. Downregulation of iRhom1 reduced enzymatic activity of proteasome complexes and overexpression of iRhom1 enhanced it. Native-gel and fractionation analyses revealed that knockdown of iRhom1 expression impaired the assembly of the proteasome complexes. The expression of iRhom1 was increased by endoplasmic reticulum (ER) stressors, such as thapsigargin and tunicamycin, leading to the enhancement of proteasome activity, especially in ER-containing microsomes. iRhom1 interacted with the 20S proteasome assembly chaperones PAC1 and PAC2, affecting their protein stability. Moreover, knockdown of iRhom1 expression impaired the dimerization of PAC1 and PAC2 under ER stress. In addition, iRhom1 deficiency in D. melanogaster accelerated the rough-eye phenotype of mutant Huntingtin, while transgenic flies expressing either human iRhom1 or Drosophila iRhom showed rescue of the rough-eye phenotype. Together, these results identify a novel regulator of proteasome activity, iRhom1, which functions via PAC1/2 under ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular Tumoral , Dimerização , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfatase 2 de Especificidade Dupla/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Células HEK293 , Humanos , Proteína Huntingtina , Proteínas de Membrana , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/metabolismo , Estabilidade Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
FEBS Lett ; 589(16): 2100-9, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25982172

RESUMO

Autophagy is a catabolic process involving autophagosome formation via lysosome. However, the initiation step of autophagy is largely unknown. We found an interaction between ULK1 and ATG9 in mammalian cells and utilized the interaction to identify novel regulators of autophagy upstream of ULK1. We established a cell-based screening assay employing bimolecular fluorescence complementation. By performing gain-of-function screening, we identified G6PT as an autophagy activator. G6PT enhanced the interaction between N-terminal Venus-tagged ULK1 and C-terminal Venus-tagged ATG9, and increased autophagic flux independent of its transport activity. G6PT negatively regulated mTORC1 activity, demonstrating that G6PT functions upstream of mTORC1 in stimulating autophagy.


Assuntos
Antiporters/metabolismo , Autofagia , Hepatócitos/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Fagossomos/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Regulação para Cima , Substituição de Aminoácidos , Animais , Antiporters/antagonistas & inibidores , Antiporters/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular , Cricetulus , Hepatócitos/citologia , Hepatócitos/enzimologia , Humanos , Proteína Huntingtina , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fagossomos/enzimologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Hum Mol Genet ; 21(1): 101-14, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21954231

RESUMO

Huntington's disease (HD), an inherited neurodegenerative disorder, is caused by an expansion of cytosine-adenine-guanine repeats in the huntingtin gene. The aggregation of mutant huntingtin (mtHTT) and striatal cell loss are representative features to cause uncontrolled movement and cognitive defect in HD. However, underlying mechanism of mtHTT aggregation and cell toxicity remains still elusive. Here, to find new genes modulating mtHTT aggregation, we performed cell-based functional screening using the cDNA expression library and isolated IRE1 gene, one of endoplasmic reticulum (ER) stress sensors. Ectopic expression of IRE1 led to its self-activation and accumulated detergent-resistant mtHTT aggregates. Treatment of neuronal cells with ER stress insults, tunicamycin and thapsigargin, increased mtHTT aggregation via IRE1 activation. The kinase activity of IRE1, but not the endoribonuclease activity, was necessary to stimulate mtHTT aggregation and increased death of neuronal cells, including SH-SY5Y and STHdhQ111/111 huntingtin knock-in striatal cells. Interestingly, ER stress impaired autophagy flux via IRE1-TRAF2 pathway, thus enhancing cellular accumulation of mtHTT. Atg5 deficiency in M5-7 cells increased mtHTT aggregation but blocked ER stress-induced mtHTT aggregation. Further, ER stress markers including p-IRE1 and autophagy markers such as p62 were up-regulated exclusively in the striatal tissues of HD mouse models and in HD patients. Moreover, down-regulation of IRE1 expression rescues the rough-eye phenotype by mtHTT in a HD fly model. These results suggest that IRE1 plays an essential role in ER stress-mediated aggregation of mtHTT via the inhibition of autophagy flux and thus neuronal toxicity of mtHTT aggregates in HD.


Assuntos
Autofagia , Regulação para Baixo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Doença de Huntington/enzimologia , Doença de Huntington/fisiopatologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endorribonucleases/genética , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas de Membrana/genética , Camundongos , Mutação , Neurônios/enzimologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ratos
9.
J Biol Chem ; 284(17): 11318-25, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19240033

RESUMO

Accumulation of expanded polyglutamine proteins is considered to be a major pathogenic biomarker of Huntington disease. We isolated SCAMP5 as a novel regulator of cellular accumulation of expanded polyglutamine track protein using cell-based aggregation assays. Ectopic expression of SCAMP5 augments the formation of ubiquitin-positive and detergent-resistant aggregates of mutant huntingtin (mtHTT). Expression of SCAMP5 is markedly increased in the striatum of Huntington disease patients and is induced in cultured striatal neurons by endoplasmic reticulum (ER) stress or by mtHTT. The increase of SCAMP5 impairs endocytosis, which in turn enhances mtHTT aggregation. On the contrary, down-regulation of SCAMP5 alleviates ER stress-induced mtHTT aggregation and endocytosis inhibition. Moreover, stereotactic injection into the striatum and intraperitoneal injection of tunicamycin significantly increase mtHTT aggregation in the striatum of R6/2 mice and in the cortex of N171-82Q mice, respectively. Taken together, these results suggest that exposure to ER stress increases SCAMP5 in the striatum, which positively regulates mtHTT aggregation via the endocytosis pathway.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Regulação para Cima , Animais , Encéfalo/embriologia , Endocitose , Humanos , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
10.
J Cell Biol ; 182(4): 675-84, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18710920

RESUMO

Amyloid-beta (Abeta) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Abeta neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)-resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Abeta increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2-mediated cell death. Finally, we find that E2-25K/Hip-2-deficient cortical neurons are resistant to Abeta toxicity and to the induction of ER stress and caspase-12 expression by Abeta. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress-mediated Abeta neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Caspase 12/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/patologia , Neurotoxinas/toxicidade , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Calpaína/metabolismo , Caspase 12/biossíntese , Caspase 12/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Dobramento de Proteína , Ratos , Espécies Reativas de Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA