Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900975

RESUMO

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

2.
ACS Infect Dis ; 10(6): 1890-1895, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38738652

RESUMO

Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.


Assuntos
Antibacterianos , Escherichia coli , Luz , Espécies Reativas de Oxigênio , Titânio , Tungstênio , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Tungstênio/química , Tungstênio/farmacologia , Catálise , Espécies Reativas de Oxigênio/metabolismo , Óxidos/farmacologia , Óxidos/química , Testes de Sensibilidade Microbiana
3.
ACS Nano ; 18(22): 14742-14753, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770934

RESUMO

Transition metal single-atom catalysts (SACs) have been regarded as possible alternatives to platinum-based materials due to their satisfactory performance of the oxygen reduction reaction (ORR). By contrast, main-group metal elements are rarely studied due to their unfavorable surface and electronic states. Herein, a main-group Sn-based SAC with penta-coordinated and asymmetric first-shell ligands is reported as an efficient and robust ORR catalyst. The introduction of the vertical oxygen atom breaks the symmetric charge balance, modulating the binding strength to oxygen intermediates and decreasing the energy barrier for the ORR process. As expected, the prepared Sn SAC exhibits outstanding ORR activity with a high half-wave potential of 0.912 V (vs RHE) and an excellent mass activity of 13.1 A mgSn-1 at 0.850 V (vs RHE), which surpasses that of commercial Pt/C and most reported transition-metal-based SACs. Additionally, the reported Sn SAC shows excellent ORR stability due to the strong interaction between Sn sites and the carbon support with oxygen atom as the bridge. The excellent ORR performance of Sn SAC was also proven by both liquid- and solid-state zinc-air battery (ZAB) measurements, indicating its great potential in practical applications.

4.
J Foot Ankle Surg ; 63(2): 127-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37898330

RESUMO

The anterior inferior tibiofibular ligament (AITFL) avulsion fracture accompanying an ankle fracture can compromise ankle stability, necessitating accurate evaluation and a clear understanding of its pathophysiology.. The aim of this study was to investigate the association between AITFL avulsion fracture and Lauge-Hansen, Wagstaffe classification. A retro-prospective study was conducted at a university-affiliated tertiary care medical center. We selected 128 patients who underwent surgery at our institution between January 2013 and July 2017 and analyzed the association between AITFL avulsion fracture and the foot position. According to the modified Wagstaffe classification system, there were 39 cases of type II, followed by 9 cases of type III and 8 cases of type IV. Of the7 pronation-abduction fractures, 3 were AITFL avulsion fracture (43%), while of the 21 pronation-external rotation fractures, 9 were AITFL avulsion fracture (43%). Of the 95 supination-external rotation fractures, there were 56 cases (59%) of AITFL avulsion fractures. Of the pronation fractures, 0% were fibular avulsion fractures and 43% were tibial avulsion fractures. Of the supination fractures, 44% were fibular avulsion fractures and 16% were tibial avulsion fracture. The difference in the ratio of fibular to tibial avulsion fractures between pronation and supination fractures was significant (p < .001). These results suggest that tibial avulsion fractures of type IV in the modified Wagstaffe classification and pronation fractures occur due to collision with the anterolateral corners of the distal bone when the talus externally rotates. Moreover, in cases of pronation fractures, a new type of AITFL avulsion fracture has been observed.


Assuntos
Fraturas do Tornozelo , Fratura Avulsão , Ligamentos Laterais do Tornozelo , Fraturas da Tíbia , Humanos , Fraturas do Tornozelo/complicações , Fraturas do Tornozelo/diagnóstico por imagem , Fraturas do Tornozelo/cirurgia , Fratura Avulsão/complicações , Fratura Avulsão/diagnóstico por imagem , Fratura Avulsão/cirurgia , Ligamentos Laterais do Tornozelo/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos
5.
Chemistry ; 30(2): e202302843, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37768323

RESUMO

Ammonia is vital for fertilizer production, hydrogen storage, and alternative fuels. The conventional Haber-Bosch process for ammonia production is energy-intensive and environmentally harmful. Designing environmentally friendly and low-energy consumption strategies for electrocatalytic N2 reduction reaction (ENRR) in mild conditions is meaningful. Single-atom catalysts (SACs) have been studied extensively for NRR due to their high atomic utilization and unique electronic structure but are limited by their poor faradic efficiency and low ammonia formation yield. Dual single-atom catalysts (DSACs) have recently emerged as a promising solution for the effective activation of molecular N2 , providing diverse active sites and synergistic interactions between adjacent atoms. In this review, we summarize the latest advances in metal DSACs for electrochemical ENRR based on both theoretical calculations and experimental studies, including aspects such as their variety, coordination, support, N2 adsorption and activity mechanisms, the characterization of NRR and electrochemical cell Configuration. We also address challenges and prospects in this rapidly evolving field, providing a comprehensive overview of DSACs for ENRR.

6.
ACS Nano ; 18(1): 874-884, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112494

RESUMO

Controllable metal-support interaction (MSI) modulations have long been studied for improving the performance of catalysts supported on metal oxides. However, the corresponding in-depth study for metal1-metal2 (M1-M2) composited configurations is rarely achieved due to the lack of reliable models and manipulation mechanisms of MSI modifications. We modeled ruthenium on copper support (Ru-Cu) metal catalysts with negligible interfacial contact potential (e0.06 V) and investigated MSI-dependent hydrogen evolution reaction (HER) catalysis kinetics induced by an electronic hydroxyl (HO-) modifier. Comprehensive simulations and characterizations confirmed that adjusting the HO- coverage can readily realize the tailorable improvement of MSI, facilitating charge migration at the Ru-Cu interface and optimizing the overall HER pathway on active Ru. As a result, a 5/10 monolayer (ML) HO-modified catalyst (5/10 ML) exhibits superior HER activity and durability owing to the relatively stronger MSI. This catalyst also ensured sustainable and efficient hydrogen generation in a urea electrolyzer with significant energy savings. Our work provides a valuable reference for optimizing the MSI-activity relationship in M1-M2 catalysts that target more than just HER.

7.
ACS Appl Mater Interfaces ; 15(48): 56084-56094, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058106

RESUMO

Currently, most carbon monoxide (CO) gas sensors work at high temperatures of over 150 °C. Developing CO gas sensors that operate at room temperature is challenging because of the sensitivity trade-offs. Here, we report an ultrasensitive CO gas sensor at room temperature using fluorine-graphdiyne (F-GDY) in which electrons are increased by light. The GDY films used as channels of field-effect transistors were prepared by using chemical vapor deposition and were characterized by using various spectroscopic techniques. With exposure to UV light, F-GDY showed a more efficient photodoping effect than hydrogen-graphdiyne (H-GDY), resulting in a larger negative shift in the charge neutral point (CNP) to form an n-type semiconductor and an increase in the Fermi level from -5.27 to -5.01 eV. Upon CO exposure, the negatively shifted CNP moved toward a positive shift, and the electrical current decreased, indicating electron transfer from photodoped GDYs to CO. Dynamic sensing experiments demonstrated that negatively charged F-GDY is remarkably sensitive to an electron-deficient CO gas, even with a low concentration of 200 parts per billion. This work provides a promising solution for enhancing the CO sensitivity at room temperature and expanding the application of GDYs in electronic devices.

8.
ACS Appl Mater Interfaces ; 15(35): 41708-41719, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37621110

RESUMO

The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aß40) peptides assembling into elongated mature Aß40 fibrils. Two-dimensional biocompatible nanostructures of Aß40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.


Assuntos
Peptídeos beta-Amiloides , Carbono , Temperatura , Catálise , Sobrevivência Celular
9.
Small ; : e2304560, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544918

RESUMO

Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2 O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.

10.
Nano Lett ; 23(17): 7927-7933, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647420

RESUMO

Transition metal dichalcogenides (TMDs) benefit electrical devices with spin-orbit coupling and valley- and topology-related properties. However, TMD-based devices suffer from traps arising from defect sites inside the channel and the gate oxide interface. Deactivating them requires independent treatments, because the origins are dissimilar. This study introduces a single treatment to passivate defects in a multilayer MoS2 FET. By applying back-gate bias, protons from an H-TFSI droplet are injected into the MoS2, penetrating deeply enough to reach the SiO2 gate oxide. The characterizations employing low-temperature transport and deep-level transient spectroscopy (DLTS) studies reveal that the trap density of S vacancies in MoS2 drops to the lowest detection level. The temperature-dependent mobility plot on the SiO2 substrate resembles that of the h-BN substrate, implying that dangling bonds in SiO2 are passivated. The carrier mobility on the SiO2 substrate is enhanced by approximately 2200% after the injection.

11.
Adv Sci (Weinh) ; 10(25): e2300925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424035

RESUMO

Graphdiyne (GDY), a new 2D material, has recently proven excellent performance in photodetector applications due to its direct bandgap and high mobility. Different from the zero-gap of graphene, these preeminent properties made GDY emerge as a rising star for solving the bottleneck of graphene-based inefficient heterojunction. Herein, a highly effective graphdiyne/molybdenum (GDY/MoS2 ) type-II heterojunction in a charge separation is reported toward a high-performance photodetector. Characterized by robust electron repulsion of alkyne-rich skeleton, the GDY based junction facilitates the effective electron-hole pairs separation and transfer. This results in significant suppression of Auger recombination up to six times at the GDY/MoS2 interface compared with the pristine materials owing to an ultrafast hot hole transfer from MoS2 to GDY. GDY/MoS2 device demonstrates notable photovoltaic behavior with a short-circuit current of -1.3 × 10-5 A and a large open-circuit voltage of 0.23 V under visible irradiation. As a positive-charge-attracting magnet, under illumination, alkyne-rich framework induces positive photogating effect on the neighboring MoS2 , further enhancing photocurrent. Consequently, the device exhibits broadband detection (453-1064 nm) with a maximum responsivity of 78.5 A W-1 and a high speed of 50 µs. Results open up a new promising strategy using GDY toward effective junction for future optoelectronic applications.

12.
Sci Adv ; 9(25): eadg2324, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343104

RESUMO

Organic systems often allow to create two triplet spin states (triplet excitons) by converting an initially excited singlet spin state (a singlet exciton). An ideally designed organic/inorganic heterostructure could reach the photovoltaic energy harvest over the Shockley-Queisser (S-Q) limit because of the efficient conversion of triplet excitons into charge carriers. Here, we demonstrate the molybdenum ditelluride (MoTe2)/pentacene heterostructure to boost the carrier density via efficient triplet transfer from pentacene to MoTe2 using ultrafast transient absorption spectroscopy. We observe carrier multiplication by nearly four times by doubling carriers in MoTe2 via the inverse Auger process and subsequently doubling carriers via triplet extraction from pentacene. We also verify efficient energy conversion by doubling the photocurrent in the MoTe2/pentacene film. This puts a step forward to enhancing photovoltaic conversion efficiency beyond the S-Q limit in the organic/inorganic heterostructures.

13.
ACS Appl Bio Mater ; 6(5): 1970-1980, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37134284

RESUMO

In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient Escherichia coli (E. coli) decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS2 and WS2 QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation. As the number of the CH3 groups of alcohol solvents among ethyl, isopropyl, and tert(t)-butyl alcohols increases, the dispersibility of MoS2/WS2 increases. The CH3 groups of alcohols minimize the surface energy, leading to the effective exfoliation and disintegration of the bulk under heat and pressure. The bulky t-butyl alcohol with the highest number of methyl groups shows the highest exfoliation and yield. MoS2 QDs with a lateral size of about 2.5 nm and WS2 QDs of about 10 nm are prepared, exhibiting a strong blue luminescence under 365 nm ultraviolet (UV) light irradiation. Their heights are 0.68-3 and 0.72-5 nm, corresponding to a few layers of MoS2 and WS2, respectively. They offer a highly efficient performance in sterilizing E. coli as the visible-light-driven photocatalyst.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Molibdênio/química , Solventes , Escherichia coli , Etanol , Antibacterianos/farmacologia , Enxofre
14.
ACS Nano ; 17(8): 7406-7416, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042711

RESUMO

Single-atom catalysts have already been widely investigated for the nitrogen reduction reaction (NRR). However, the simplicity of a single atom as an active center encounters the challenge of modulating the multiple reaction intermediates during the NRR process. Moving toward the single-atom-dimer (SAD) structures can not only buffer the multiple reaction intermediates but also provide a strategy to modify the electronic structure and environment of the catalysts. Here, a structure of a vanadium SAD (V-O-V) catalyst on N-doped carbon (O-V2-NC) is proposed for the electrochemical nitrogen reduction reaction, in which the vanadium dimer is coordinated with nitrogen and simultaneously bridged by one oxygen. The oxygen-bridged metal atom dimer that has more electron deficiency is perceived to be the active center for nitrogen reduction. A loop evolution of the intermediate structure was found during the theoretical process simulated by density functional theory (DFT) calculation. The active center V-O-V breaks down to V-O and V during the protonation process and regenerates to the original V-O-V structure after releasing all the nitrogen species. Thus, the O-V2-NC structure presents excellent activity toward the electrochemical NRR, achieving an outstanding faradaic efficiency (77%) along with the yield of 9.97 µg h-1 mg-1 at 0 V (vs RHE) and comparably high ammonia yield (26 µg h-1 mg-1) with the FE of 4.6% at -0.4 V (vs RHE). This report synthesizes and proves the peculiar V-O-V dimer structure experimentally, which also contributes to the library of SAD catalysts with superior performance.

15.
Chem Commun (Camb) ; 59(6): 756-759, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541631

RESUMO

Epoxidation of dicyclopentadiene (DCPD) is studied on a series of TiO2 catalysts using hydrogen peroxide as an oxidant. DCPD derivatives have applications in several areas including polymer, pharmaceutical and pesticide products. The control of selectivity leading to the desired product is important for many of these applications. Using experimental and computational studies, we show that the surface crystalline phases of TiO2 play crucial roles not only in the formation of peroxo species but also in the selective epoxidation of two different CC double bonds in DCPD.


Assuntos
Peróxido de Hidrogênio , Titânio , Peróxido de Hidrogênio/química , Catálise
16.
ACS Appl Mater Interfaces ; 14(48): 53603-53614, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36404762

RESUMO

Band-edge modulation of halide perovskites as photoabsorbers plays significant roles in the application of photovoltaic and photochemical systems. Here, Lewis acidity of dopants (M) as the new descriptor of engineering the band-edge position of the perovskite is investigated in the gradiently doped perovskite along the core-to-surface (CsPbBr3-CsPb1-xMxBr3). Reducing M-bromide bond strength with an increase in hardness of acidic M increases the electron ability of basic Br, thus strengthening the Pb-Br orbital coupling in M-Pb-Br, noted as the inductive effect of dopants. Especially, the highly hard Lewis acidic Mg localized in the outer position of the perovskite induces the increase of work function and then shifts band edge upward along the core-to-surface of the perovskite. Thus, charge separation driven by the dopant-induced internal electric field induces the slow annihilation of the excited holes, improving the slow aromatic Csp3-H dissociation in the photocatalytic oxidation process by ∼211% (491.39 µmol g-1 h-1) enhancements, compared with undoped nanocrystals.

17.
ACS Appl Mater Interfaces ; 14(43): 49303-49312, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36241609

RESUMO

Stretchable electronics have become essential for custom-built electronics, self-assembling robotics, and wearable devices. Although many stretchable electronics contain integrated systems, they still limit bulky connection systems. We introduce a new dual-functioned self-attachable and stretchable interface (SASI), allowing a direct and instant interconnection between rigid and soft electronics. The SASI consists of a sticky and stretchable substrate and surface-embedded serpentine conductors with the single-sided polyimide fabricated using the embedded transfer process. The adhesion property of the SASI is controlled by the mixed elastomer ratio. The resulting sticky and conductive SASI can instantly adhere to a metal surface and create conductive paths. The SASI serpentine conductors exhibit high stretchability (∼290%) and provide self-attachable, re-attachable, and low-resistant electrical contacts (0.85 ohms in 0.25 mm2) between interfaces without pressure, heat, or extra solder. In addition, three-dimensional curved and modular electronics can be formed with the SASI by compiling functional blocks. SASI provides a novel strategy for assembling functional chips or modules for stretchable electronics, opening a path to onboard integrated electronics that are customizable by users for real-world stretchable electronics.

18.
Angew Chem Int Ed Engl ; 61(50): e202209555, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36289044

RESUMO

While higher selectivity of nitrogen reduction reaction (NRR) to ammonia (NH3 ) is always achieved in alkali, the selectivity dependence on nitrogen (N2 ) protonation and mechanisms therein are unrevealed. Herein, we profile how the NRR selectivity theoretically relies upon the first protonation that is collectively regulated by proton (H) abundance and adsorption-desorption, along with intermediate-*NNH formation. By incorporating electronic metal modulators (M=Co, Ni, Cu, Zn) in nitrogenase-imitated model-iron polysulfide (FeSx), a series of FeMSx catalysts with tailorable protonation kinetics are obtained. The key intermediates behaviors traced by in situ FT-IR and Raman spectroscopy and operando electrochemical impedance spectroscopy demonstrate the strong protonation kinetics-dependent selectivity that mathematically follows a log-linear Bradley curve. Strikingly, FeCuSx exhibits a record-high selectivity of 75.05 % at -0.1 V (vs. RHE) for NH3 production in 0.1 M KOH electrolyte.

19.
ACS Nano ; 16(9): 15297-15309, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099061

RESUMO

Exploring single-atom catalysts (SACs) for the nitrate reduction reaction (NO3-; NitRR) to value-added ammonia (NH3) offers a sustainable alternative to both the Haber-Bosch process and NO3--rich wastewater treatment. However, due to the insufficient electron deficiency and unfavorable electronic structure of SACs, resulting in poor NO3--adsorption, sluggish proton (H*) transfer kinetics, and preferred hydrogen evolution, their NO3--to-NH3 selectivity and yield rate are far from satisfactory. Herein, a systematic theoretical prediction reveals that the local electron deficiency of an f-block Gd single atom (GdSA) can be significantly regulated upon coordination with oxygen-defect-rich NiO (GdSA-D-NiO400) support. Thus, facilitating stronger NO3- adsorption via strong Gd5d-O2p orbital coupling and further improving the protonation kinetics of adsorption intermediates by rapid H* capture from water dissociation catalyzed by the adjacent oxygen vacancy site along with suppressed H* dimerization synergistically boosts the NH3 selectivity/yield rate. Motivated by DFT prediction, we delicately stabilized electron-deficient (strongly electrophilic) GdSA on D-NiO400 (∼84% strong electrophilic sites), which exhibited excellent alkaline NitRR activity (NH3 Faradaic efficiency ∼97% and yield rate ∼628 µg/(mgcat h)) along with superior structural stability, as revealed by in situ Raman spectroscopy, significantly outperforming weakly electrophilic Gd nanoparticles, defect-free GdSA-P-NiO400, and reported state-of-the-art catalysts.

20.
J Phys Chem Lett ; 13(34): 8192-8199, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005807

RESUMO

Exploring efficient catalysts for alkaline seawater electrolysis is highly desired yet challenging. Herein, coupling single-atom rhodium with amorphous nickel hydroxide nanoparticles on copper nanowire arrays is designed as a new active catalyst for the highly efficient alkaline seawater electrolysis. We found that an amorphous Ni(OH)2 nanoparticle is an effective catalyst to accelerate the water dissociation step. In contrast, the single-atom rhodium is an active site for adsorbed hydrogen recombination to generate H2. The NiRh-Cu NA/CF catalyst shows superior electrocatalytic activity toward HER, surpassing a benchmark Pt@C. In detail, the NiRh-Cu NA/CF catalyst exhibits HER overpotentials as low as 12 and 21 mV with a current density of 10 mA cm-2 in fresh water and seawater, respectively. At high current density, the NiRh-Cu NA/CF catalyst also exhibits an outstanding performance, where 300 mA cm-2 can be obtained at an overpotential of 155 mV and shows a slight fluctuation in the current density over 30 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA