Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Adv Mater ; : e2405685, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963061

RESUMO

To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.

2.
Adv Sci (Weinh) ; : e2403326, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940393

RESUMO

Chirality-induced spin selectivity observed in chiral 2D organic-inorganic hybrid perovskite holds promise to achieve spin-dependent electrochemistry. However, conventional chiral 2D perovskites suffer from low conductivity and hygroscopicity, limiting electrochemical performance and operational stability. Here, a cutting-edge material design is introduced to develop a stable and efficient chiral perovskite-based spin polarizer by employing fluorinated chiral cation. The fluorination approach effectively promotes the charge carrier transport along the out-of-plane direction by mitigating the dielectric confinement effect within the multi-quantum well-structured 2D perovskite. Integrating the fluorinated cation incorporated spin polarizer with BiVO4 photoanode considerably boosts the photocurrent density while reducing overpotential through a spin-dependent oxygen evolution reaction. Furthermore, the hydrophobic nature of fluorine in spin polarizer endows operational stability to the photoanode, extending the durability by 280% as compared to the device with non-fluorinated spin polarizer.

3.
Nat Commun ; 15(1): 4672, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824151

RESUMO

The oxygen evolution reaction, which involves high overpotential and slow charge-transport kinetics, plays a critical role in determining the efficiency of solar-driven water splitting. The chiral-induced spin selectivity phenomenon has been utilized to reduce by-product production and hinder charge recombination. To fully exploit the spin polarization effect, we herein propose a dual spin-controlled perovskite photoelectrode. The three-dimensional (3D) perovskite serves as a light absorber while the two-dimensional (2D) chiral perovskite functions as a spin polarizer to align the spin states of charge carriers. Compared to other investigated chiral organic cations, R-/S-naphthyl ethylamine enable strong spin-orbital coupling due to strengthened π-π stacking interactions. The resulting naphthyl ethylamine-based chiral 2D/3D perovskite photoelectrodes achieved a high spin polarizability of 75%. Moreover, spin relaxation was prevented by employing a chiral spin-selective L-NiFeOOH catalyst, which enables the secondary spin alignment to promote the generation of triplet oxygen. This dual spin-controlled 2D/3D perovskite photoanode achieves a 13.17% of applied-bias photon-to-current efficiency. Here, after connecting the perovskite photocathode with L-NiFeOOH/S-naphthyl ethylamine 2D/3D photoanode in series, the resulting co-planar water-splitting device exhibited a solar-to-hydrogen efficiency of 12.55%.

4.
J Korean Med Sci ; 39(18): e150, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742290

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, patients with myasthenia gravis (MG) were more susceptible to poor outcomes owing to respiratory muscle weakness and immunotherapy. Several studies conducted in the early stages of the COVID-19 pandemic reported higher mortality in patients with MG compared to the general population. This study aimed to investigate the clinical course and prognosis of COVID-19 in patients with MG and to compare these parameters between vaccinated and unvaccinated patients in South Korea. METHODS: This multicenter, retrospective study, which was conducted at 14 tertiary hospitals in South Korea, reviewed the medical records and identified MG patients who contracted COVID-19 between February 2022 and April 2022. The demographic and clinical characteristics associated with MG and vaccination status were collected. The clinical outcomes of COVID-19 infection and MG were investigated and compared between the vaccinated and unvaccinated patients. RESULTS: Ninety-two patients with MG contracted COVID-19 during the study. Nine (9.8%) patients required hospitalization, 4 (4.3%) of whom were admitted to the intensive care unit. Seventy-five of 92 patients were vaccinated before contracting COVID-19 infection, and 17 were not. During the COVID-19 infection, 6 of 17 (35.3%) unvaccinated patients were hospitalized, whereas 3 of 75 (4.0%) vaccinated patients were hospitalized (P < 0.001). The frequencies of ICU admission and mechanical ventilation were significantly lower in the vaccinated patients than in the unvaccinated patients (P = 0.019 and P = 0.032, respectively). The rate of MG deterioration was significantly lower in the vaccinated patients than in the unvaccinated patients (P = 0.041). Logistic regression after weighting revealed that the risk of hospitalization and MG deterioration after COVID-19 infection was significantly lower in the vaccinated patients than in the unvaccinated patients. CONCLUSION: This study suggests that the clinical course and prognosis of patients with MG who contracted COVID-19 during the dominance of the omicron variant of COVID-19 may be milder than those at the early phase of the COVID-19 pandemic when vaccination was unavailable. Vaccination may reduce the morbidity of COVID-19 in patients with MG and effectively prevent MG deterioration induced by COVID-19 infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , Miastenia Gravis , SARS-CoV-2 , Vacinação , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/complicações , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Idoso , SARS-CoV-2/isolamento & purificação , Adulto , Prognóstico , Unidades de Terapia Intensiva , Respiração Artificial
5.
J Clin Neurophysiol ; 41(3): 278-284, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436391

RESUMO

PURPOSE: Nerve conduction study (NCS) is essential for subclassifying Guillain-Barré syndrome (GBS). It is well known that the GBS subclassification can change through serial NCSs. However, the usefulness of serial NCSs is debatable, especially in patients with early stage GBS. METHODS: Follow-up NCS data within 3 weeks (early followed NCS, EFN) and within 3 to 10 weeks (late-followed NCS, LFN) were collected from 60 patients with GBS who underwent their first NCS (FN) within 10 days after symptom onset. Each NCS was classified into five subtypes (normal, demyelinating, axonal, inexcitable, and equivocal), according to Hadden's and Rajabally's criteria. We analyzed the frequency of significant changes in classification (SCCs) comprising electrodiagnostic aggravation and subtype shifts between demyelinating and axonal types according to follow-up timing. RESULTS: Between FN and EFN, 33.3% of patients with Hadden's criteria and 18.3% with Rajabally's criteria showed SCCs. Between FN and LFN, 23.3% of patients with Hadden's criteria and 21.7% with Rajabally's criteria showed SCCs, of which 71.4% (Hadden's criteria) and 46.2% (Rajabally's criteria) already showed SCCs from the EFN. The conditions of delayed SCCs between EFN and LFN were very early FN, mild symptoms at the FN, or persistent electrophysiological deterioration 3 weeks after symptom onset. CONCLUSIONS: A substantial proportion of patients with GBS showed significant changes in neurophysiological classification at the early stage. Serial NCS may be helpful for precise neurophysiological classification. This study suggests that follow-up NCSs should be performed within 3 weeks of symptom onset in patients with GBS in whom FN was performed within 10 days of symptom onset.


Assuntos
Síndrome de Guillain-Barré , Zinostatina , Humanos , Síndrome de Guillain-Barré/diagnóstico , Estudos de Condução Nervosa , Neurofisiologia
6.
Nat Commun ; 15(1): 1495, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374159

RESUMO

Hydrogen production techniques based on solar-water splitting have emerged as carbon-free energy systems. Many researchers have developed highly efficient thin-film photoelectrochemical (PEC) devices made of low-cost and earth-abundant materials. However, solar water splitting systems suffer from short lifetimes due to catalyst instability that is attributed to both chemical dissolution and mechanical stress produced by hydrogen bubbles. A recent study found that the nanoporous hydrogel could prevent the structural degradation of the PEC devices. In this study, we investigate the protection mechanism of the hydrogel-based overlayer by engineering its porous structure using the cryogelation technique. Tests for cryogel overlayers with varied pore structures, such as disconnected micropores, interconnected micropores, and surface macropores, reveal that the hydrogen gas trapped in the cryogel protector reduce shear stress at the catalyst surface by providing bubble nucleation sites. The cryogelated overlayer effectively preserves the uniformly distributed platinum catalyst particles on the device surface for over 200 h. Our finding can help establish semi-permanent photoelectrochemical devices to realize a carbon-free society.

7.
J Laryngol Otol ; : 1-4, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795680

RESUMO

BACKGROUND: As autophony can be accompanied by several conditions, it is important to find co-morbidities. This paper reports a patient with Kennedy's disease (spinobulbar muscular atrophy, an X-linked, hereditary, lower motor neuron disease) having autophony as the first symptom. CASE REPORT: A 62-year-old male presented to the otorhinolaryngology department with autophony that began 2 years previously and worsened after losing weight 3 months prior to presentation. Otoscopic examination demonstrated inward and outward movement of the tympanic membrane, synchronised with respiration. Although he had no other symptoms, facial twitching was found on physical examination. In the neurology department, lower motor neuron disease, with subtle weakness of the tongue, face and upper limbs, and gynaecomastia, were confirmed. He was diagnosed with Kennedy's disease based on genetic analysis. CONCLUSION: Autophonia was presumed to be attributed to bulbofacial muscle weakness due to Kennedy's disease, and worsened by recent weight loss. Patients with autophony require a thorough history-taking and complete physical examination to assess the nasopharynx and the integrity of lower cranial function.

8.
Clin Interv Aging ; 18: 1009-1020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427011

RESUMO

Purpose: Several studies have examined the clinical impact of poststroke and stroke-related sarcopenia on stroke recovery. However, few studies have investigated the effect of sarcopenia detected shortly after stroke on functional prognosis. We predicted functional outcomes using early screening for sarcopenia in patients with acute ischemic stroke. We also examined the effect of sarcopenia detected shortly after stroke on functional prognosis. Patients and Methods: Patients diagnosed with acute ischemic stroke within 2 days of symptom onset were consecutively enrolled at a tertiary university hospital. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry during early hospitalization. Sarcopenia was diagnosed based on low ASM and strength criteria of the Asian Working Group for Sarcopenia (AWGS) and European Working Group on Sarcopenia in Older People (EWGSOP2). The primary outcome was poor functional outcome, defined as a modified Rankin score of 4-6 and all-cause mortality at 3 months. Results: Of the 653 patients, 214 (32.8%) and 174 (26.6%) had sarcopenia according to the AWGS and EWGSOP2 criteria, respectively. Irrespective of the definition, the sarcopenia group had a significantly higher proportion of patients with poor functional outcomes and all-cause mortality. Multivariate logistic regression analysis revealed that height-adjusted ASM was independently associated with poor functional outcomes (odds ratio: 0.61; 95% confidence interval: 0.40-0.91; P <0.005), and they were negatively correlated. However, the association between 3-month mortality, skeletal muscle mass, and sarcopenia was not sustained in multivariate analyses. Conclusion: Height-adjusted ASM associated with sarcopenia is a potential predictor of poor functional outcomes at 3 months in patients with acute stroke. However, owing to the limitations of this study, further research is required to confirm these findings.


Assuntos
AVC Isquêmico , Sarcopenia , Acidente Vascular Cerebral , Humanos , Idoso , AVC Isquêmico/complicações , Músculo Esquelético/patologia , Sarcopenia/complicações , Sarcopenia/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Absorciometria de Fóton , Força da Mão
9.
Small ; 19(40): e2304166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282813

RESUMO

The sluggish and complex multi-step oxygen evolution reaction remains an obstacle to bias-free photoelectrochemical water-splitting systems. Several theoretical studies have suggested that spin-aligned intermediate radicals can significantly enhance the kinetic rates for oxygen generation. Herein, it is reported that the chirality-induced spin selectivity phenomena can become an impressive approach by adopting chiral 2D organic-inorganic hybrid perovskites as a spin-filtering layer on the photoanode. This chiral 2D perovskite-based water-splitting device achieves enhanced oxygen evolution performance with a reduced overpotential of 0.14 V, high fill factor, and 230% increased photocurrent compared to a device without a spin-filtering layer. Moreover, combined with a superhydrophobic patterning strategy, this device realizes excellent operational stability by sustaining ≈90% of the initial photocurrent, even after 10 h.

10.
Nat Commun ; 14(1): 3124, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253736

RESUMO

In principle, the induced chirality of hybrid perovskites results from symmetry-breaking within inorganic frameworks. However, the detailed mechanism behind the chirality transfer remains unknown due to the lack of systematic studies. Here, using the structural isomer with different functional group location, we deduce the effect of hydrogen-bonding interaction between two building blocks on the degree of chirality transfer in inorganic frameworks. The effect of asymmetric hydrogen-bonding interaction on chirality transfer was clearly demonstrated by thorough experimental analysis. Systematic studies of crystallography parameters confirm that the different asymmetric hydrogen-bonding interactions derived from different functional group location play a key role in chirality transfer phenomena and the resulting spin-related properties of chiral perovskites. The methodology to control the asymmetry of hydrogen-bonding interaction through the small structural difference of structure isomer cation can provide rational design paradigm for unprecedented spin-related properties of chiral perovskite.

11.
J Clin Neurol ; 19(5): 460-468, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36929062

RESUMO

BACKGROUND AND PURPOSE: To understand the characteristics of Korean patients with anti-3-hydroxy-3-methylglutaryl-coenxyme A reductase (HMGCR) myopathy, we measured anti-HMGCR antibodies and analyzed the clinical, radiological, and pathological features of patients with anti-HMGCR myopathy. METHODS: We measured titers of anti-HMGCR antibodies in the sera of 99 patients with inflammatory myopathy, 36 patients with genetic myopathy, and 63 healthy subjects using an enzyme-linked immunosorbent assay. We tested 16 myositis-specific autoantibodies (MSAs) in all patients with anti-HMGCR myopathy. RESULTS: Positivity for the anti-HMGCR antibody was observed in 17 (4 males and 13 females) of 99 patients with inflammatory myopathy. The median age at symptom onset was 60 years. Ten (59%) of the patients with anti-HMGCR positivity had taken statins. The titer of anti-HMGCR antibodies was significantly higher in the statin-naïve group (median=230 U/mL, interquartile range=170-443 U/mL) than in the statin-exposed group (median=178 U/mL, interquartile range=105-210 U/mL, p=0.045). The most common symptom was proximal muscle weakness in 15 patients (88%), followed by myalgia in 9 (53%), neck weakness in 4 (24%), dysphagia in 3 (18%), and skin lesions in 2 (12%). The median titer of anti-HMGCR antibody was 202 U/mL. We found eight different MSAs in nine (53%) patients. The median disease duration from symptom onset to diagnosis was significantly shorter in the MSA-positive group than in the MSA-negative group (p=0.027). CONCLUSIONS: Our study was the first to measure anti-HMGCR antibodies in inflammatory myopathy. It has provided new findings, including the suggestion of the coexistence of other MSAs in Korean patients.

12.
Small ; 19(27): e2300174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965011

RESUMO

A wireless solar water splitting device provides a means to achieve an inexpensive and highly distributed solar-to-fuel system owing to its portability, flexible scale, and simple design. Here, a highly efficient hydrogen-generating artificial leaf is introduced, which is a wireless configuration for converting solar energy into chemical energy, by integrating a hybrid perovskite (PSK) as the light absorber with catalysts for electrochemical reaction. First, a single integrated photoelectrochemical photocathode, and a spatially decoupled hydrogen evolution reaction catalyst, are fabricated. A decoupled geometry is adopted to enable the physical protection of the PSK layer from the electrolyte, thus allowing excellent stability for over 85 h. Additionally, an efficient dual photovoltaic module photocathode is fabricated to produce sufficient photovoltage to drive water splitting reactions, as well as a high photocurrent to achieve the applied-bias photoconversion efficiency (13.5%). To investigate the overall water splitting performance, a NiFe-OH catalyst is employed, and the device with a wired configuration achieves a photocurrent density of 9.35 mA cm-2 , corresponding to a solar to hydrogen (STH) efficiency of 11.5%. The device with a fully integrated wireless artificial leaf configuration exhibited a similar STH efficiency of over 11%, demonstrating the effectiveness of this cell design.

13.
Nat Commun ; 14(1): 609, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739416

RESUMO

Stabilizing atomically dispersed single atoms (SAs) on silicon photoanodes for photoelectrochemical-oxygen evolution reaction is still challenging due to the scarcity of anchoring sites. Here, we elaborately demonstrate the decoration of iridium SAs on silicon photoanodes and assess the role of SAs on the separation and transfer of photogenerated charge carriers. NiO/Ni thin film, an active and highly stable catalyst, is capable of embedding the iridium SAs in its lattices by locally modifying the electronic structure. The isolated iridium SAs enable the effective photogenerated charge transport by suppressing the charge recombination and lower the thermodynamic energy barrier in the potential-determining step. The Ir SAs/NiO/Ni/ZrO2/n-Si photoanode exhibits a benchmarking photoelectrochemical performance with a high photocurrent density of 27.7 mA cm-2 at 1.23 V vs. reversible hydrogen electrode and 130 h stability. This study proposes the rational design of SAs on silicon photoelectrodes and reveals the potential of the iridium SAs to boost photogenerated charge carrier kinetics.

14.
Adv Sci (Weinh) ; 10(6): e2206286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646498

RESUMO

To realize practical solar hydrogen production, a low-cost photocathode with high photocurrent density and onset potential should be developed. Herein, an efficient and stable overall photoelectrochemical tandem cell is developed with a Cu3 BiS3 -based photocathode. By exploiting the crystallographic similarities between Bi2 S3 and Cu3 BiS3 , a one-step solution process with two sulfur sources is used to prepare the Bi2 S3 -Cu3 BiS3 blended interlayer. The elongated Bi2 S3 -Cu3 BiS3 mixed-phase 1D nanorods atop a planar Cu3 BiS3 film enable a high photocurrent density of 7.8 mA cm-2 at 0 V versus the reversible hydrogen electrode, with an onset potential of 0.9 VRHE . The increased performance over the single-phase Cu3 BiS3 thin-film photocathode is attributed to the enhanced light scattering and charge collection through the unique 1D nanostructure, improved electrical conductivity, and better band alignment with the n-type CdS layer. A solar-to-hydrogen efficiency of 2.33% is achieved under unassisted conditions with a state-of-the-art Mo:BiVO4 photoanode, with excellent stability exceeding 21 h.

15.
J Am Chem Soc ; 144(35): 16020-16033, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036662

RESUMO

Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.

16.
Nat Commun ; 13(1): 3259, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672362

RESUMO

Chiral perovskites are being extensively studied as a promising candidate for spintronic- and polarization-based optoelectronic devices due to their interesting spin-polarization properties. However, the origin of chiroptical activity in chiral perovskites is still unknown, as the chirality transfer mechanism has been rarely explored. Here, through the nano-confined growth of chiral perovskites (MBA2PbI4(1-x)Br4x), we verified that the asymmetric hydrogen-bonding interaction between chiral molecular spacers and the inorganic framework plays a key role in promoting the chiroptical activity of chiral perovskites. Based on this understanding, we observed remarkable asymmetry behavior (absorption dissymmetry of 2.0 × 10-3 and anisotropy factor of photoluminescence of 6.4 × 10-2 for left- and right-handed circularly polarized light) in nanoconfined chiral perovskites even at room temperature. Our findings suggest that electronic interactions between building blocks should be considered when interpreting the chirality transfer phenomena and designing hybrid materials for future spintronic and polarization-based devices.

17.
Cerebrovasc Dis ; 51(5): 608-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340005

RESUMO

BACKGROUND: High-resolution magnetic resonance imaging (HRMRI) can provide information on the histopathological characteristics of intracranial atherosclerotic lesions causing arterial stenosis; however, its clinical application in intracranial atherosclerosis lacks standardization for predicting stenosis. Therefore, this study investigated the characteristics of HRMRI that can predict progression based on comparisons of follow-up HRMRI. METHODS: We retrospectively enrolled patients who underwent HRMRI within 7 days of symptom onset to evaluate the characteristics associated with intracranial stenotic lesions. Among them, patients diagnosed with severe stenosis due to atherosclerosis and who underwent follow-up HRMRI 12-24 months after initial HRMRI were included in the final study. We analyzed distinct features, such as stenosis aggravation, the presence of initial plaque enhancement, increment of plaque enhancement, the existence of both eccentric and concentric plaques, and the presence of initial intraplaque hematoma on initial and follow-up HRMRI. RESULTS: Among 442 patients who underwent HRMRI for severe stenosis due to atherosclerosis, 35 underwent follow-up HRMRI 12-24 months later. Patients with stenosis aggravation showed a higher incidence of plaque enhancement (87.5% vs. 3.7%, p < 0.001) and the presence of both concentric and eccentric plaques (75.0% vs. 11.1%; p = 0.001). The area under the curve for the increment of plaque enhancement was 0.92 (95% confidence interval [CI] 0.78-1.00, p ≤ 0.001), while that for the presence of both concentric and eccentric plaques was 0.82 (95% CI 0.63-1.00, p < 0.007). CONCLUSIONS: The presence of both concentric and eccentric plaques and an increase in plaque enhancement were the strongest predictors of aggravation of intracranial artery stenosis.


Assuntos
Aterosclerose , Arteriosclerose Intracraniana , Placa Aterosclerótica , Aterosclerose/complicações , Constrição Patológica/complicações , Seguimentos , Humanos , Arteriosclerose Intracraniana/complicações , Arteriosclerose Intracraniana/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/complicações , Estudos Retrospectivos
18.
Adv Sci (Weinh) ; 8(21): e2102458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494726

RESUMO

To achieve a high solar-to-hydrogen (STH) conversion efficiency, delicate strategies toward high photocurrent together with sufficient onset potential should be developed. Herein, an SnS semiconductor is reported as a high-performance photocathode. Use of proper sulfur precursor having weak dipole moment allows to obtain high-quality dense SnS nanoplates with enlarged favorable crystallographic facet, while suppressing inevitable anisotropic growth. Furthermore, the introducing Ga2 O3 layer between SnS and TiO2 in SnS photocathodes efficiently improves the charge transport kinetics without charge trapping. The SnS photocathode reveals the highest photocurrent density of 28 mA cm-2 at 0 V versus the reversible hydrogen electrode. Overall solar water splitting is demonstrated for the first time by combining the optimized SnS photocathode with a Mo:BiVO4 photoanode, achieving a STH efficiency of 1.7% and long-term stability of 24 h. High performance and low-cost SnS photocathode represent a promising new material in the field of photoelectrochemical solar water splitting.

19.
ACS Appl Mater Interfaces ; 12(12): 13824-13835, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32134237

RESUMO

Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide-based counterparts because of the neglect of the interfacial energetics between the electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with a non-g-AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.

20.
ACS Appl Mater Interfaces ; 12(13): 15155-15166, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167272

RESUMO

Although tin monosulfide (SnS) is one of the promising earth-abundant semiconducting materials for photoelectrochemical water splitting, the performance of SnS photocathodes remains poor. Herein, we report a stepwise approach for the fabrication of highly efficient photocathodes based on SnS nanoplates via elaborate modulation of molecular solutions. It is demonstrated that phase-pure SnS nanoplates without detrimental secondary phases (such as SnS2 and Sn2S3) can be readily obtained by adjusting the amounts of Sn and S in the precursor solution. Additionally, the orientation of SnS nanoplates is controlled by implementing different types of SnS seed layers. The orientations of the SnS seed layers are changed according to the molecular shapes of the Sn-S bonds in the molecular solutions, depending on the relative nucleophilicity of the molecular moieties formed by specific thiol-amine reactions. The molecular Sn-S sheets in the seed ink was obtained by the reaction in a solvent mixture of thiogylcolic acid and ethanolamine. By contrast, the short Sn-S molecular rods result from the reaction in a solvent mixture of 2-mercaptoethanol and ethylenediamine. Interestingly, the relatively short rodlike morphology of the SnS seed induces the growth of SnS nanostructures faceted by preferred (111) and (101) planes, leading to fast charge transport. With the formation of a proper band alignment with n-type CdS and TiO2, the preferred (111)- and (101)-oriented SnS nanoplate-based photocathode exhibited a photocurrent density of -19 mA cm-2 at 0 V versus a reversible hydrogen electrode, establishing a new benchmark for SnS photocathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA