RESUMO
A Community Genetics carrier screening program for the Jewish community has operated on-site in high schools in Sydney (Australia) for 25 years. During 2020, in response to the COVID-19 pandemic, government-mandated social-distancing, 'lock-down' public health orders, and laboratory supply-chain shortages prevented the usual operation and delivery of the annual testing program. We describe development of three responses to overcome these challenges: (1) pivoting to online education sufficient to ensure informed consent for both genetic and genomic testing; (2) development of contactless telehealth with remote training and supervision for collecting genetic samples using buccal swabs; and (3) a novel patient and specimen identification 'GeneTrustee' protocol enabling fully identified clinical-grade specimens to be collected and DNA extracted by a research laboratory while maintaining full participant confidentiality and privacy. These telehealth strategies for education, consent, specimen collection and sample processing enabled uninterrupted delivery and operation of complex genetic testing and screening programs even amid pandemic restrictions. These tools remain available for future operation and can be adapted to other programs.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Manejo de Espécimes/métodos , Consentimento Livre e Esclarecido , Testes GenéticosRESUMO
Peptide YY (PYY) is best known for its important role in appetite regulation, but recent pharmacological studies have suggested that PYY is also involved in regulating energy balance and glucose homeostasis. However, the mechanism behind the regulation of these parameters by PYY is less clear. Here, by utilising an inducible transgenic mouse model where PYY overexpression is induced in adult animals (PYYtg) and release of mature PYY peptides is controlled by endogenous machineries, we show that elevating PYY levels leads to reduced food intake after a 24-h fast. Furthermore, PYYtg mice, although not significantly different from WT with respect to body weight, adiposity, lean mass, physical activity or energy expenditure, exhibited a significantly increased respiratory exchange ratio (RER), indicating decreased lipid oxidation and/or increased lipogenesis. Importantly, PYYtg mice showed a 25% reduction in liver protein levels of phosphorylated acetyl-CoA carboxylase (pACC) in the absence of changes in total ACC levels compared to those of WT mice. Moreover, liver protein levels of AMP-activated kinase (AMPK) in PYYtg mice were 25% lower than those of WT mice, consistent with a reduced pACC in these mice. These data suggest that elevation of PYY levels as seen after a meal can increase lipogenic capacity, which is likely a key contributor to the increased RER seen in PYYtg mice. In addition, PYYtg mice exhibited comparable insulin tolerance and oral glucose tolerance to those of WT, but showed a trend towards decreased insulin levels in response to an oral glucose challenge, indicating that PYY could improve insulin action. Taken together, these findings demonstrate that under physiological conditions, PYY reduces food intake while enhancing lipogenic capacity and insulin action, likely contributing to fuel assimilation in the postprandial state.