Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1495, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374159

RESUMO

Hydrogen production techniques based on solar-water splitting have emerged as carbon-free energy systems. Many researchers have developed highly efficient thin-film photoelectrochemical (PEC) devices made of low-cost and earth-abundant materials. However, solar water splitting systems suffer from short lifetimes due to catalyst instability that is attributed to both chemical dissolution and mechanical stress produced by hydrogen bubbles. A recent study found that the nanoporous hydrogel could prevent the structural degradation of the PEC devices. In this study, we investigate the protection mechanism of the hydrogel-based overlayer by engineering its porous structure using the cryogelation technique. Tests for cryogel overlayers with varied pore structures, such as disconnected micropores, interconnected micropores, and surface macropores, reveal that the hydrogen gas trapped in the cryogel protector reduce shear stress at the catalyst surface by providing bubble nucleation sites. The cryogelated overlayer effectively preserves the uniformly distributed platinum catalyst particles on the device surface for over 200 h. Our finding can help establish semi-permanent photoelectrochemical devices to realize a carbon-free society.

2.
Adv Sci (Weinh) ; 10(6): e2206286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646498

RESUMO

To realize practical solar hydrogen production, a low-cost photocathode with high photocurrent density and onset potential should be developed. Herein, an efficient and stable overall photoelectrochemical tandem cell is developed with a Cu3 BiS3 -based photocathode. By exploiting the crystallographic similarities between Bi2 S3 and Cu3 BiS3 , a one-step solution process with two sulfur sources is used to prepare the Bi2 S3 -Cu3 BiS3 blended interlayer. The elongated Bi2 S3 -Cu3 BiS3 mixed-phase 1D nanorods atop a planar Cu3 BiS3 film enable a high photocurrent density of 7.8 mA cm-2 at 0 V versus the reversible hydrogen electrode, with an onset potential of 0.9 VRHE . The increased performance over the single-phase Cu3 BiS3 thin-film photocathode is attributed to the enhanced light scattering and charge collection through the unique 1D nanostructure, improved electrical conductivity, and better band alignment with the n-type CdS layer. A solar-to-hydrogen efficiency of 2.33% is achieved under unassisted conditions with a state-of-the-art Mo:BiVO4 photoanode, with excellent stability exceeding 21 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA