Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
ACS Appl Mater Interfaces ; 16(30): 39232-39240, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39038229

RESUMO

Photorechargeable supercapacitors are promising next-generation renewable energy storage devices. Previously, a hybrid structure consisting of indium-tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) was demonstrated as a photorechargeable supercapacitor. However, the formation mechanism of photovoltage has not been studied. Herein, we experimentally investigated the photovoltage-determining parameters in the ITO BRs/P3HT photorechargeable supercapacitor by inserting a polyethylenimine ethoxylated (PEIE) interlayer or adding a phenyl-C61-butyric acid methyl ester (PCBM) electron acceptor. Coating the PEIE interlayer on ITO BRs decreased the work function by 0.5 eV and hindered the hole extraction from P3HT to ITO BRs, leading to interfacial recombination and a decrease in photovoltage. On the other hand, the addition of PCBM promoted the charge transfer of the electrons from P3HT to PCBM, enhanced the redox reaction at the PCBM/electrolyte interface, and reduced the number of accumulated electrons, leading to a decreased photovoltage. From these results, we found that two key parameters determine the photovoltage and charge storage capability; one is the interfacial recombination at the ITO BRs/P3HT interface and the other is the redox reaction at the P3HT/electrolyte interface.

2.
Opt Express ; 31(25): 41611-41621, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087555

RESUMO

In GaN-based vertical micro LEDs, conventional metal n-contacts on the N face n-GaN suffer from a low aperture ratio due to the high reflection of metals, resulting in low-light extraction efficiencies. Great efforts have been devoted to enhancing transparency by employing transparent conducting oxides for n-contacts, but they exhibited poor Ohmic behavior due to their large work functions. Herein, we introduce an InN/ITO n-contact to achieve both superior contact property and high transparency. At the initial stage, the ITO with thin In interlayer was utilized, and the change in contact properties was observed with different annealing temperatures in the N2 atmosphere. After annealing at 200 °C, the In/ITO n-contact exhibited Ohmic behavior with high a transparency of 74% in the blue wavelength region. The metallic In transformed into InN during the annealing process, as confirmed by transmission electron microscopy. The formation of InN caused polarization-induced band bending at the InN/GaN interface, providing evidence of enhanced Ohmic properties. In the application of vertical GaN µLED, the EQE increased from 6.59% to 11.5% while operating at 50 A/cm2 after the annealing process.

3.
ACS Appl Mater Interfaces ; 15(35): 41688-41696, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615163

RESUMO

Due to their promising advantages over classical rigid devices, the development of display textiles has exciting potential for various fields, including sensor technology, healthcare, and communication. To realize display textiles, it is necessary to prepare light-emitting building blocks at the fiber level and then weave or knit them to form the desired textile structures. However, from a practical viewpoint, it is difficult to continuously weave functional fibers containing light-emitting devices using conventional textile technologies. To address this issue, we introduced fibrous modules that can be assembled like LEGO blocks to realize textile displays. A unique feature of this work is that the light-emitting pixels are generated through a simple contact between modular electrochemiluminescent (ECL) fibers. Each fiber is composed of a single metallic wire coated with a gel-type ECL electrolyte that is formed by using a simple dip-coating method in ambient air. The sticky nature of the gel electrolyte enables the construction of light-emitting pixels through the simple physical contact of two or more fiber modules without the need for external pressure or heating. The diversity of this technology offers in terms of fibrous module arrangements and assembly can provide various options for designing the geometries of light-emitting pixels. We have implemented this technique to demonstrate not only a 1 × 1 pixel but also 3 × 3 pixels with an irregular shape. These results demonstrate that the unique strategy for display devices developed in this work provides a feasible approach for various electronic and optical textile applications.

4.
J Appl Crystallogr ; 55(Pt 4): 813-822, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979068

RESUMO

Serial femtosecond crystallography (SFX) enables the determination of room-temperature crystal structures of macromolecules with minimized radiation damage and provides time-resolved molecular dynamics by pump-probe or mix-and-inject experiments. In SFX, a variety of sample delivery methods with unique advantages have been developed and applied. The combination of existing sample delivery methods can enable a new approach to SFX data collection that combines the advantages of the individual methods. This study introduces a combined inject-and-transfer system (BITS) method for sample delivery in SFX experiments: a hybrid injection and fixed-target scanning method. BITS allows for solution samples to be reliably deposited on ultraviolet ozone (UVO)-treated polyimide films, at a minimum flow rate of 0.5 nl min-1, in both vertical and horizontal scanning modes. To utilize BITS in SFX experiments, lysozyme crystal samples were embedded in a viscous lard medium and injected at flow rates of 50-100 nl min-1 through a syringe needle onto a UVO-treated polyimide film, which was mounted on a fixed-target scan stage. The crystal samples deposited on the film were raster scanned with an X-ray free electron laser using a motion stage in both horizontal and vertical directions. Using the BITS method, the room-temperature structure of lysozyme was successfully determined at a resolution of 2.1 Å, and thus BITS could be utilized in future SFX experiments.

5.
ACS Appl Mater Interfaces ; 14(15): 17709-17718, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35389205

RESUMO

Herein, a new concept of device architecture to fabricate fibrous light-emitting devices is demonstrated based on an electrochemiluminescence (ECL) material for an electronic textile system. A unique feature of this work is that instead of conventional semiconductor materials, such as organics, perovskites, and quantum dots for fibrous light emitting devices, a solid-state ECL electrolyte gel is employed as a light-emitting layer. The solid-state ECL gel is prepared from a precursor solution composed of matrix polymer, ionic liquid, and ECL luminophore. From this, we successfully realize light-emitting fibers through a simple and cost-effective single-step dip-coating method in ambient air, without complicated multistep vacuum processes. The resulting fiber devices reliably operated under applied AC bias of ±2.5 V and showed luminance of 47 cd m-2. More importantly, the light-emitting fibers exhibited outstanding water resistance without any passivation layers, owing to the water immiscible and hydrophobic nature of the ECL gel. In addition, because of their simple structure, the fiber devices can be easily deformed and woven together with commercial knitwear by hand. Therefore, these results suggest a promising strategy for the development of practical fiber displays and contribute to progress in electronic textile technology.

6.
ACS Nano ; 16(3): 3546-3553, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35184548

RESUMO

Metasurface-driven optical encryption devices have attracted much attention. Here, we propose a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption. Nine polarization-encoded vectorial holograms are observed under UV laser illumination, while another independent hologram appears under visible laser illumination. The proposed engineered silicon nitride, which is transparent in UV, is employed to demonstrate the UV hologram. Nine holographic images for different polarization states are encoded using a pixelated metasurface. The dual-band metahologram is experimentally implemented by stacking the individual metasurfaces that operate in the UV and visible. The visible hologram can be decrypted to provide the first key, a polarization state, which is used to decode the password hidden in the UV vectorial hologram through the use of an analyzer. Considering the property of UV to be invisible to the naked eye, the multiple polarization channels of the vectorial hologram, and the dual-band decoupling, the demonstrated dual-band vectorial hologram device could be applied in various high-security and anticounterfeiting applications.

7.
ACS Appl Mater Interfaces ; 13(33): 39660-39670, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387461

RESUMO

Red, green, and blue top-emission organic light-emitting diodes (RGB TOLEDs) suffer from white color change with viewing angle due to the microcavity effect, called white angular dependence (WAD). Great efforts are devoted by applying various kinds of hazy films, but they suffer from poor mechanical stability and optical transmittance. Herein, we introduce an air-gap-embedded hazy film (AEHF) to solve these problems and suppress WAD in RGB TOLEDs. The AEHF is designed with optical simulation to realize high haze with transparency. By tuning geometries of the air gap inside the polymer, the AEHF realizes high haze of more than 90% in all RGB colors while maintaining high transparency. To experimentally demonstrate the AEHF, the O2 plasma is treated on a polymer film with AgCl as an etching mask to fabricate microstructures with high aspect ratios. Afterward, PDMS is coated on the patterned surface; air gaps develop spontaneously in the valleys between microstructures during the coating process. Using these processes, an air gap with 1.2 µm size and 400 nm period is formed inside the film and ∼100% haze is achieved while maintaining a high transmittance of 88%; these results agree well with rigorous coupled wave analysis results. By utilizing the AEHF into TOLEDs, the WAD can be drastically suppressed by 95.2% compared with that of a device without AEHF.

8.
J Am Chem Soc ; 143(27): 10099-10107, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210119

RESUMO

Hybrid materials consisting of semiconductors and cocatalysts have been widely used for photoelectrochemical (PEC) conversion of CO2 gas to value-added chemicals such as formic acid (HCOOH). To date, however, the rational design of catalytic architecture enabling the reduction of real CO2 gas to chemical has remained a grand challenge. Here, we report a unique photocathode consisting of CuS-decorated GaN nanowires (NWs) integrated on planar silicon (Si) for the conversion of H2S-containing CO2 mixture gas to HCOOH. It was discovered that H2S impurity in the modeled industrial CO2 gas could lead to the spontaneous transformation of Cu to CuS NPs, which resulted in significantly increased faradaic efficiency of HCOOH generation. The CuS/GaN/Si photocathode exhibited superior faradaic efficiency of HCOOH = 70.2% and partial current density = 7.07 mA/cm2 at -1.0 VRHE under AM1.5G 1 sun illumination. To our knowledge, this is the first demonstration that impurity mixed in the CO2 gas can enhance, rather than degrade, the performance of the PEC CO2 reduction reaction.

9.
Small ; 17(29): e2100654, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34174148

RESUMO

Energy-saving window that selectively blocks near-infrared (NIR) is a promising technology to save energy consumption. However, it is hard to achieve both high transmittance in visible light and high reflectance in NIR for the energy-saving windows. Here, a TiO2 /Ag/TiO2 /SiO2 /TiO2 multilayer is demonstrated on a glass substrate to selectively block NIR while maintaining high transmittance to visible light. The thickness of a TiO2 /Ag/TiO2 structure is first design and optimized; the metal layer reflects NIR and the dielectric layers increase transmittance of visible light with zero reflection condition. To further enhance NIR-blocking capability, a TiO2 back reflector is implemented with a SiO2 spacer to TiO2 /Ag/TiO2 structure. The back reflector can induce additional Fresnel reflection without sacrificing transmittance to visible light. The optimal TiO2 (32 nm)/Ag (22 nm)/TiO2 (30 nm)/SiO2 (100 nm)/TiO2 (110 nm)/glass shows solar energy rejection 89.2% (reflection 86.5%, absorption 2.7%) in NIR, visible transmittance 69.9% and high long-wave (3 ≤ λ ≤ 20 µm) reflectance > 95%. This proposed visible-transparent, near-infrared-reflecting multilayer film can be applied to the windows of buildings and automobiles to reduce the energy consumption.

10.
ACS Appl Mater Interfaces ; 13(19): 22676-22683, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956445

RESUMO

We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive characteristics that originated from the unique porous and self-connected network structure. The hybrid structure of ITO BR/P3HT exhibited spontaneous light harvesting, energy conversion, and charge storage. As a result, photocharging/discharging of ITO BR/P3HT showed an areal capacitance of 2.44 mF/cm2 at a current density of 0.02 mA/cm2. The proof-of-concept photorechargeable device, composed of ITO BRs, ITO BR/P3HT, and Na2SO4/polyvinyl acetate gel electrolyte, generated a photovoltage as high as 0.28 V and stored charge effectively for tens of seconds. The combination of dual functions in a single hybrid material may achieve breakthrough advances.

11.
ACS Appl Mater Interfaces ; 13(16): 18905-18913, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848138

RESUMO

We investigated the relationship between grain boundary (GB) oxidation of Cu-Ag thin-film catalysts and selectivity of the (photo)electrochemical CO2 reduction reaction (CO2 RR). The change in the thickness of the Cu thin film accompanies the variation of GB density, and the Ag layer (3 nm) has an island-like morphology on the Cu thin film. Therefore, oxygen from ambient air penetrates into the Cu thin film through the GB of Cu and binds with it because the uncoordinated Cu atoms at the GBs are unstable. It was found that the Cu thin film with a small grain size was susceptible to spontaneous oxidation and degraded the faradaic efficiency (FE) of CO and CH4. However, a relatively thick (≥80 nm) Cu layer was effective in preventing the GB oxidation and realized catalytic properties similar to those of bulk Cu-Ag catalysts. The optimized Cu (100 nm)-Ag (3 nm) thin film exhibited a unique bifunctional characteristic, which enables selective production of both CO (FECO = 79.8%) and CH4 (FECH4 = 59.3%) at a reductive potential of -1.0 and -1.4 VRHE, respectively. Moreover, the Cu-Ag thin film was used as a cocatalyst for photo-electrochemical CO2 reduction by patterning the Cu-Ag thin film and a SiO2 passivation layer on a p-type Si photocathode. This novel architecture improved the selectivity of CO and CH4 under light illumination (100 mW/cm2).

12.
Opt Express ; 28(21): 30466-30477, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115047

RESUMO

Blocking the near-infrared region (NIR) is indispensable for saving energy consumed to maintain the interior temperature in buildings. However, simultaneously enhancing transmission in visible light and blocking in the NIR remains challenging. Here, we theoretically demonstrate a transparent all-dielectric metasurface selectively blocking the NIR by using TiO2 nanocylinders and an indium tin oxide (ITO) layer. The ITO layer is implemented as a back reflector because ITO is transparent in visible light, whereas the ITO becomes a reflective material in the long-wavelength region (λ > 1500 nm). The designed metasurface exhibits high average transmittance of 70% in visible light and high solar energy rejection (SER) of 90% in the NIR. Furthermore, the blocking capability in the NIR of the designed metasurface is maintained over a wide range of an incident angle and polarization angle of light. Therefore, the metasurface gives a guideline for designing energy-saving applications.

13.
Sci Rep ; 10(1): 12819, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733037

RESUMO

Three-dimensional (3D) plasmonic structures have attracted great attention because abnormal wetting behavior of plasmonic nanoparticles (NPs) on 3D nanostructure can enhance the localized surface plasmons (LSPs). However, previous 3D plasmonic nanostructures inherently had weak plasmonic light absorption, low electrical conductivity, and optical transmittance. Here, we fabricated a novel 3D plasmonic nanostructure composed of Ag NPs as the metal for strong LSPs and 3D nano-branched indium tin oxide (ITO BRs) as a transparent and conductive framework. The Ag NPs formed on the ITO BRs have a more dewetted behavior than those formed on the ITO films. We experimentally investigated the reasons for the dewetting behavior of Ag NPs concerning the geometry of ITO BRs. The spherical Ag NPs are spatially separated and have high density, thereby resulting in strong LSPs. Finite-domain time-difference simulation evidenced that spatially-separated, high-density and spherical Ag NPs formed on ITO BRs dramatically boost the localized electric field in the active layer of organic solar cells (OSCs). Photocurrent of PTB7:PCBM OSCs with the ITO BRs/Ag NPs increased by 14%.

14.
ACS Appl Mater Interfaces ; 12(32): 36339-36346, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672925

RESUMO

We present a remarkable improvement in the efficiency of AlGaN deep-ultraviolet light-emitting diodes (LEDs) enabled by the coupling of localized surface plasmon resonance (LSPR) mediated by a high-density array of Al nanoparticles (NPs). The Al NPs with an average diameter of ∼40 nm were uniformly distributed near the Al0.43Ga0.57N/Al0.50Ga0.50N multiple quantum well active region for coupling 285 nm emission by block copolymer lithography. The internal quantum efficiency is enhanced by 57.7% because of the decreased radiative recombination lifetime by the LSPR. As a consequence, the AlGaN LEDs with an array of Al NPs show 33.3% enhanced electroluminescence with comparable electrical properties to those of reference LEDs without Al NPs.

15.
ACS Appl Mater Interfaces ; 12(20): 22891-22900, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32392026

RESUMO

The electrochemical CO2 reduction in aqueous media is a promising method for both the mitigation of climate changes and the generation of value-added fuels. Although many researchers have demonstrated selective and stable catalysts for electrochemical reduction of pure CO2 gas, the conversion of industrial CO2 gas has been limited. Here, we fabricated the copper sulfide catalysts (CuSx), which were spontaneously formed by dipping a Cu foil into a laboratory-prepared industrial CO2-purged 0.1 M KHCO3 electrolyte. Because industrial CO2 contains H2S gas, sulfur species dissolved in the electrolyte can easily react with the Cu foil. As the concentration of dissolved sulfur species increased, the reaction between the Cu foil and sulfur enhanced. As a result, the average size and surface density of CuSx nanoparticles (NPs) increased to 133.2 ± 33.1 nm and 86.2 ± 3.3%, respectively. Because of the larger amount of sulfur content and the enlarged electrochemical surface area of CuSx NPs, the Faradaic efficiency (FE) of formate was improved from 22.7 to 72.0% at -0.6 VRHE. Additionally, CuSx catalysts showed excellent stability in reducing industrial CO2 to formate. The change in FE was hardly observed even after long-term (72 h) operation. This study experimentally demonstrated that spontaneously formed CuSx catalysts are efficient and stable for reducing the industrial CO2 gas to formate.

16.
J Appl Crystallogr ; 53(Pt 2): 477-485, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280322

RESUMO

Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Šresolution.

17.
Nanoscale ; 12(16): 8750-8757, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32141458

RESUMO

We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm.

18.
Sci Rep ; 10(1): 5540, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218542

RESUMO

Subwavelength-scale nanorods were implemented on the hexagonal pyramid of photochemically etched light-emitting diodes (LEDs) to improve light extraction efficiency (LEE). Sequential processes of Ag deposition and inductively coupled plasma etching successfully produce nanorods on both locally unetched flat surface and sidewall of hexagonal pyramids. The subwavelength-scale structures on flat surface offer gradually changed refractive index, and the structures on side wall of hexagonal pyramid reduce backward reflection, thereby enhancing further enhancement of the light extraction efficiency. Consequently, the nanorods implemented LED shows a remarkable enhancement in the light output power by 14% compared with that of the photochemically etched LEDs which is known to exhibit the highest light output power. Theoretical calculations using a rigorous coupled wave analysis method reveal that the subwavelength-scale nanorods are very effective in the elimination of TIR as well as backward reflections, thereby further enhancing LEE of the LEDs.

19.
ACS Appl Mater Interfaces ; 11(33): 30477-30483, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31393691

RESUMO

Large-scale industrial application of flexible device has called for development of transfer methods that deliver high yield and stability. Here, we show an ultrafast and chemically stable transfer method by using a water-soluble NaCl sacrificial layer. Extremely thin (10 nm) and large-area (4 in. wafer) free-standing Au nanomembranes (NMs) prepared on silicon substrate were successfully transferred to flexible PDMS substrate by dissolving the NaCl sacrificial layer. This transfer method enables highly transparent and electrically conductive Au NMs on PDMS substrate. To transfer a multilayered optoelectronic device, we fabricated flexible hydrogenated amorphous silicon (a-Si:H) solar cell on a glass substrate and transferred it to a PDMS substrate. There was no degradation of the electrical characteristic of the solar cell after the transfer. This approach enables the integration of high-temperature-processed a-Si:H solar cell onto low-temperature tolerant flexible polymer substrate without chemical contamination or damage.

20.
Sci Rep ; 9(1): 6971, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061502

RESUMO

Fixed-target serial femtosecond crystallography (FT-SFX) was an important advance in crystallography by dramatically reducing sample consumption, while maintaining the benefits of SFX for obtaining crystal structures at room temperature without radiation damage. Despite a number of advantages, preparation of a sample holder for the sample delivery in FT-SFX with the use of many crystals in a single mount at ambient temperature is challenging as it can be complicated and costly, and thus, development of an efficient sample holder is essential. In this study, we introduced a nylon mesh-based sample holder enclosed by a polyimide film. This sample holder can be rapidly manufactured using a commercially available nylon mesh with pores of a desired size at a low cost without challenging technology. Furthermore, this simple device is highly efficient in data acquisition. We performed FT-SFX using a nylon mesh-based sample holder and collected over 130,000 images on a single sample holder using a 30 Hz X-ray pulse for 1.2 h. We determined the crystal structures of lysozyme and glucose isomerase using the nylon mesh at 1.65 and 1.75 Å, respectively. The nylon mesh exposed to X-rays produced very low levels of background scattering at 3.75 and 4.30 Å, which are negligible for data analysis. Our method provides a simple and rapid but highly efficient way to deliver samples for FT-SFX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA