Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Bioinformation ; 19(9): 981-986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928488

RESUMO

The atomic resolution model of US9, UL20, and gH protein of HSV is known. Hence, the ligand protein interaction of the US9, UL20, and gH protein models were carried out with synthetic drugs like acyclovir, bexarotene, vinorelbine, foscarnet, famciclovir, cidofovir and two plant derived natural drug acacetin and anthraquinone. Based on structure and docking study, it is predicted that protein US20 and gH binds with particular anti-HSV drug i.e. acyclovir, cidofovir, acacetin and famciclovir, acacetin respectively, while interaction of different protein is different with drugs.

2.
Bioinformation ; 19(9): 976-980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928490

RESUMO

We report the genome size estimated using flow cytometry for four closely related species, including false daisy (Eclipta prostrate), cheek weed (Ageratum conyzoides), pot marigold (Calendula officinalis), and marigold (Tagetes erecta) belonging to Asteraceae family. The detected genome size for false daisy, cheek weed, pot marigold, and marigold was, 2.435, 3.266, 3.413, and 1.897, Gbp, respectively, while their respective 2C DNA content was 2.5, 3.3, 3.5, and 1.9, pg. The information on genome size presented here will be useful for understanding genomic evolution and will also clear the way for additional genomic research in these species.

3.
Bioinformation ; 19(10): 990-994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969662

RESUMO

Aflatoxin is a potent mycotoxin of Aspergillus flavus that has been classified as a Group I carcinogen. O-methyltransferase A (Omt-A) is a critical enzyme in the formation of aflatoxin. It catalyzes the methylation of norsalic acid to form the highly toxic intermediate averantin. The ligand-protein interaction of Omt-A was performed with piperlonguminin and blasticidins. The maximum affinity of -10.6 was found for the 5ICC_A piperlonguminine at site1 (X,Y,Z: -15.282, 21.785, 5.672). Compounds such as Blasticidin S, Neoeriocitrin, Blasticidin S - hydrochloric acid, 6,6''-Bigenkwanin, Pipernomaline, and Eriodictyol were found to have binding features to protein residues, as shown by computational interaction at the molecular level.

4.
Bioinformation ; 19(10): 995-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969663

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy, pose a growing global health challenge due to an aging population. These conditions share common processes, including protein accumulation, oxidative stress, and neuro-inflammation, making their treatment complex and costly. Network pharmacology, an innovative approach integrating systems biology and computational biology, offers insights into multi-target formulations and the repurposing of existing medications for neurodegenerative diseases. We shortlisted 730 bioactive compounds from 25 traditional Himalayan plants, assessed their drug-like properties using ADME criteria, and predicted their potential target proteins through reverse docking and pharmacophore mapping. Our study identified 287 compounds with high gastrointestinal absorption and good blood-brain barrier permeability. These compounds were subjected to target prediction, yielding a list of 171 potential target proteins. Functional annotation and pathway enrichment analysis highlighted their involvement in steroid hormone-related pathways, MAPK signaling, FOXO signaling, TNF signaling, VEGF signaling, and neurotrophin signaling. Importantly, one plant, Valeriana jatamansi, exhibited an association with beta-amyloid binding activity, a potential therapeutic approach for AD. From our study we could understand how these plants modulate our body to manage these diseases. However, further in vitro and in vivo validation is needed before commercial and public use of this data.

5.
J King Saud Univ Sci ; 35(1): 102397, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36406239

RESUMO

Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. A recent study confirmed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity of masitinib through inhibition of the main protease (Mpro) enzyme, an important pharmacological drug target to block the replication of the coronavirus. However, due to the adverse effects and lower potency of the drug, there are opportunities to design better analogues of masitinib. Herein, we substituted the N-methylpiperazine group of Masitinib with different chemical moieties and evaluated their drug-likeness and toxicities. The filtered analogues were subjected to molecular docking studies which revealed that the analogues with substituents methylamine in M10 (CID10409602), morpholine in M23 (CID59789397) and 4-methylmorpholine in M32 (CID143003625) have a stronger affinity to the drug receptor compared to masitinib. The molecular dynamics (MD) simulation analysis reveals that the identified analogues alter the mobility, structural compactness, accessibility to solvent molecules, and the number of hydrogen bonds in the native target enzyme. These structural alterations can help explain the inhibitory mechanisms of these analogues against the target enzyme. Thus, our studies provide avenues for the design of new masitinib analogues as the SARS-CoV-2 Mpro inhibitors.

6.
J King Saud Univ Sci ; 35(1): 102458, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36466790

RESUMO

Background: Monkeypox Virus (MPV) is the cause of zoonotic disease characterized by skin-eruption with pus cell formation and lymphadenopathy. This virus belongs to the Orthopoxvirus genus with DNA as its genetic material. Previously, this infection was reported from Africa and occasionally from USA and UK. However, recently there is a sudden surge of infection in non-epidemic countries and a new strain of MPVhas been discovered. Therefore it is important to revisit the phylogeny of MPV with the addition of new strains. Recently WHO also stressed the need of developing vaccines for new strains. In this scenario we have two objectives for this study -first, to reveal the exact phylogenetic position of the 2022 strain and second, to identify specific peptides which may be used for vaccine development in the future. Methods: The phylogenetic analysis was done with the help of Bayesian phylogeny. The dN/dS calculation was performed based on DNA polymerase genes of selected MPV strains. The peptidyl-epitope was searched in MPV2022/2 SLO strain with the help of several algorithms implemented in Allergen FP v.1.0, NetMHCII 2.3, MHCpred and Toxin Pred. The structure prediction of the proteins and peptides was performed through Hpepdock. The quality of the structures was validated through the Ramachandran plot. The molecular dynamics and simulation were performed through Gromacs software. The interaction between peptide and protein was assessed through Ligplot software. Results: The phylogenetic analysis revealed that the considered 2022 MPVstrains were close to the USA strains. The evolutionary analysis showed the volatile nature of the genome. Moreover, 9-mer peptide sequence was identified as an epitope for vaccine development. Conclusions: The emergence of more virulent strains in near future may not be ruled out. Immunocompromised patients are more susceptible to this virus hence sub-unit vaccine is a better choice than a recombinant or attenuated vaccine against monkeypox. We have identified a small stretch of specific peptide which may be used for developing a subunit vaccine against this virus.

7.
Toxicol Rep ; 10: 56-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36583135

RESUMO

In recent years, small molecule inhibition of LDHA (Lactate Dehydrogenase A) has evolved as an appealing option for anticancer therapy. LDHA catalyzes the interconversion of pyruvate and lactate in the glycolysis pathway to play a crucial role in aerobic glycolysis. Therefore, in the current investigation LDHA was targeted with bioactive phytochemicals of an ethnomedicinally important plant species Oroxylum indicum (L.) Kurz. A total of 52 phytochemicals were screened against LDHA protein through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) assay and molecular dynamics simulation to reveal three potential lead compounds such as Chrysin-7-O-glucuronide (-8.2 kcal/mol), Oroxindin (-8.1 kcal/mol) and Oroxin A (-8.0 kcal/mol). ADMET assay unveiled favorable pharmacokinetic, pharmacodynamic and toxicity properties for all the lead compounds. Molecular dynamics simulation exhibited significant conformational stability and compactness. MM/GBSA free binding energy calculations further corroborated the selection of top candidates where Oroxindin (-46.47 kcal/mol) was found to be better than Chrysin-7-O-glucuronide (-45.72 kcal/mol) and Oroxin A (-37.25 kcal/mol). Aldolase reductase and Xanthine dehydrogenase enzymes were found as potential drug targets and Esculin, the FDA approved drug was identified as structurally analogous to Oroxindin. These results could drive in establishing novel medications targeting LDHA to fight cancer.

8.
Front Plant Sci ; 13: 913011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873997

RESUMO

Subfamily Nandinoideae Heintze (Berberidaceae), comprising four genera and ca. 19 species, is disjunctively distributed in eastern North America vs. Eurasia (eastern Asia, Central Asia, Middle East, and southeastern Europe), and represents an ideal taxon to explore plastid phylogenomics and plastome evolution in Berberidaceae. Many species of this subfamily have been listed as national or international rare and endangered plants. In this study, we sequenced and assembled 20 complete plastomes, representing three genera and 13 species of Nandinoideae. Together with six plastomes from GenBank, a total of 26 plastomes, representing all four genera and 16 species of Nandinoideae, were used for comparative genomic and phylogenomic analyses. These plastomes showed significant differences in overall size (156,626-161,406 bp), which is mainly due to the expansion in inverted repeat (IR) regions and/or insertion/deletion (indel) events in intergenic spacer (IGS) regions. A 75-bp deletion in the ndhF gene occurred in Leontice and Gymnospermium when compared with Nandina and Caulophyllum. We found a severe truncation at the 5' end of ycf1 in three G. altaicum plastomes, and a premature termination of ropC1 in G. microrrhynchum. Our phylogenomic results support the topology of {Nandina, [Caulophyllum, (Leontice, Gymnospermium)]}. Within the core genus Gymnospermium, we identified G. microrrhynchum from northeastern Asia (Clade A) as the earliest diverging species, followed by G. kiangnanense from eastern China (Clade B), while the rest species clustered into the two sister clades (C and D). Clade C included three species from West Tianshan (G. albertii, G. darwasicum, G. vitellinum). Clade D consisted of G. altaicum from northern Central Asia, plus one species from the Caucasus Mountains (G. smirnovii) and three from southeastern Europe (G. odessanum, G. peloponnesiacum, G. scipetarum). Overall, we identified 21 highly variable plastome regions, including two coding genes (rpl22, ycf1) and 19 intergenic spacer (IGS) regions, all with nucleotide diversity (Pi) values > 0.02. These molecular markers should serve as powerful tools (including DNA barcodes) for future phylogenetic, phylogeographic and conservation genetic studies.

9.
PLoS One ; 17(6): e0268919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657783

RESUMO

The appearance of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of effective antiviral therapeutics for coronavirus disease 2019 (COVID-19), a highly infectious disease caused by the virus, demands the search for alternative therapies. Most antiviral drugs known are passive defenders which must enter the cell to execute their function and suffer from concerns such as permeability and effectiveness, therefore in this current study, we aim to identify peptide inactivators that can act without entering the cells. SARS-CoV-2 spike protein is an essential protein that plays a major role in binding to the host receptor angiotensin-converting enzyme 2 and mediates the viral cell membrane fusion process. SARS vaccines and treatments have also been developed with the spike protein as a target. The virtual screening experiment revealed antiviral peptides which were found to be non-allergen, non-toxic and possess good water solubility. U-1, GST-removed-HR2 and HR2-18 exhibit binding energies of -47.8 kcal/mol, -43.01 kcal/mol, and -40.46 kcal/mol, respectively. The complexes between these peptides and spike protein were stabilized through hydrogen bonds as well as hydrophobic interactions. The stability of the top-ranked peptide with the drug-receptor is evidenced by 50-ns molecular dynamics (MD) simulations. The binding of U-1 induces conformational changes in the spike protein with alterations in its geometric properties such as increased flexibility, decreased compactness, the increased surface area exposed to solvent molecules, and an increase in the number of total hydrogen bonds leading to its probable inactivation. Thus, the identified antiviral peptides can be used as anti-SARS-CoV-2 candidates, inactivating the virus's spike proteins and preventing it from infecting host cells.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
10.
J King Saud Univ Sci ; 34(6): 102155, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702062

RESUMO

Platycodon grandiflorus (Jacq.) A. DC. (Campanulaceae) is commonly known as a balloon flower whose rhizomes have been widely utilized in traditional Chinese medicine (TCM) and in various Japanese prescriptions for the treatment of respiratory diseases, diabetes, and inflammatory disorders. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) global pandemic requires priming of the virus's spike (S) protein by cleavage of the S proteins by a multi-domain type II transmembrane serine protease, transmembrane protease serine 2 (TMPRSS2) to gain entry into the host cell. The current research aims at the screening of active phytocompounds of P. grandiflorus as potential inhibitors of cellular TMPRSS2 using molecular docking and molecular dynamics simulations approach. In silico toxicity analyses show that out of a total of 34 phytocompounds selected for the study, 12 compounds obey Lipinski's rule of five and have favourable pharmacokinetic properties. The top three lead molecules identified here were Apigenin, Luteolin and Ferulic acid which exhibited binding energies of -7.47 kcal/mol, -6.8 kcal/mol and -6.62 kcal/mol respectively with corresponding inhibition constants of 3.33 µM, 10.39 µM and 13.95 µM. The complexes between the lead molecules and the receptor were held by hydrogen bond interactions with key residues such as Gly383, Gly385, Glu389, Lys390, Asp435, Ser436, Ser441, Cys465 and Lys467, and hydrophobic interactions with surrounding residues. The stability of the protein-ligand complexes was evaluated during 100 ns molecular dynamics (MD) simulation by analysing key geometric properties such as RMSD, RMSF, radius of gyration, total solvent accessible surface area and the number of hydrogen bonds. The binding free energies analysis using MD simulations revealed that the compounds and TMPRSS2 have favourable thermodynamic interactions, which are primarily driven by van der Waals forces. As a result, the selected bioactive phytochemicals from P. grandiflorus that target the cellular TMPRSS2 could offer an alternative treatment option against SARS-CoV-2 infections.

11.
Ann Bot ; 130(1): 53-64, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35533344

RESUMO

BACKGROUND AND AIMS: The East Asian-Tethyan disjunction pattern and its mechanisms of formation have long been of interest to researchers. Here, we studied the biogeographical history of Asteraceae tribe Cardueae, with a particular focus on the temperate East Asian genus Atractylodes DC., to understand the role of tectonic and climatic events in driving the diversification and disjunctions of the genus. METHODS: A total of 76 samples of Atractylodes from 36 locations were collected for RAD-sequencing. Three single nucleotide polymorphism (SNP) datasets based on different filtering strategies were used for phylogenetic analyses. Molecular dating and ancestral distribution reconstruction were performed using both chloroplast DNA sequences (127 Cardueae samples) and SNP (36 Atractylodes samples) datasets. KEY RESULTS: Six species of Atractylodes were well resolved as individually monophyletic, although some introgression was identified among accessions of A. chinensis, A. lancea and A. koreana. Dispersal of the subtribe Carlininae from the Mediterranean to East Asia occurred after divergence between Atractylodes and Carlina L. + Atractylis L. + Thevenotia DC. at ~31.57 Ma, resulting in an East Asian-Tethyan disjunction. Diversification of Atractylodes in East Asia mainly occurred from the Late Miocene to the Early Pleistocene. CONCLUSIONS: Aridification of Asia and the closure of the Turgai Strait in the Late Oligocene promoted the dispersal of Cardueae from the Mediterranean to East China. Subsequent uplift of the Qinghai-Tibet Plateau as well as changes in Asian monsoon systems resulted in an East Asian-Tethyan disjunction between Atractylodes and Carlina + Atractylis + Thevenotia. In addition, Late Miocene to Quaternary climates and sea level fluctuations played major roles in the diversification of Atractylodes. Through this study of different taxonomic levels using genomic data, we have revealed an overlooked dispersal route between the Mediterranean and far East Asia (Japan/Korea) via Central Asia and East China.


Assuntos
Atractylodes , Filogenia , Dispersão Vegetal , Atractylodes/classificação , Atractylodes/genética , Ásia Oriental , Filogeografia
12.
Saudi J Biol Sci ; 29(6): 103297, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35475118

RESUMO

The increased transmissibility and highly infectious nature of the new variant of concern (VOC) that is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and lack of effective therapy need the rapid discovery of therapeutic antivirals against it. The present investigation aimed to identify antiviral compounds that would be effective against SARS-CoV-2 Omicron. In this study, molecular docking experiments were carried out using the recently reported experimental structure of omicron spike protein in complex with human angiotensin-converting enzyme 2 (ACE2) and various antivirals in preclinical and clinical trial studies. Out of 36 tested compounds, Abemaciclib, Dasatinib and Spiperone are the three top-ranked molecules which scored binding energies of -10.08 kcal/mol, -10.06 kcal/mol and -9.54 kcal/mol respectively. Phe338, Asp339, and Asp364 are crucial omicron receptor residues involved in hydrogen bond interactions, while other residues were mostly involved in hydrophobic interactions with the lead molecules. The identified lead compounds also scored well in terms of drug-likeness. Molecular dynamics (MD) simulation, essential dynamics (ED) and entropic analysis indicate the ability of these molecules to modulate the activity of omicron spike protein. Therefore, Abemaciclib, Dasatinib and Spiperone are likely to be viable drug-candidate molecules that can block the interaction between the omicron spike protein and the host cellular receptor ACE2. Though our findings are compelling, more research into these molecules is needed before they can be employed as drugs to treat SARS-CoV-2 omicron infections.

13.
PLoS One ; 17(3): e0265231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275977

RESUMO

Larrea tridentata (Sesse and Moc. ex DC.) Coville (family: Zygophyllaceae) is an aromatic evergreen shrub with resin-covered leaves, known to use in traditional medicine for diverse ailments. It also has immense pharmacological significance due to presence of powerful phenylpropanoids antioxidant, nordihydroguaiaretic acid (NDGA). The RNA sequence/transcriptome analyses connect the genomic information into the discovery of gene function. Hence, the acquaint analysis of L. tridentata is in lieu to characterize the transcriptome, and to identify the candidate genes involved in the phenylpropanoid biosynthetic pathway. To gain molecular insight, the bioinformatics analysis of transcriptome was performed. The total bases covered 48,630 contigs of length greater than 200 bp and above came out to 21,590,549 with an average GC content of 45% and an abundance of mononucleotide, SSR, including C3H, FAR1, and MADS transcription gene families. The best enzyme commission (EC) classification obtained from the assembled sequences represented major abundant enzyme classes e.g., RING-type E3 ubiquitin transferase and non-specific serine/threonine protein kinase. The KEGG pathway analysis mapped into 377 KEGG different metabolic pathways. The enrichment of phenylpropanoid biosynthesis pathways (22 genes i.e., phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, cinnamoyl-CoA reductase, beta-glucosidase, shikimate O-hydroxycinnamoyl transferase, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase, cinnamyl-alcohol dehydrogenase, peroxidase, coniferyl-alcohol glucosyltransferase, caffeoyl shikimate esterase, caffeoyl-CoA O-methyltransferase, caffeate O-methyltransferase, coniferyl-aldehyde dehydrogenase, feruloyl-CoA 6-hydroxylase, and ferulate-5-hydroxylase), and expression profile indicated antioxidant, anti-arthritic, and anticancer properties of L. tridentata. The present results could provide an important resource for squeezing biotechnological applications of L. tridentata.


Assuntos
Larrea , Transcriptoma , Antioxidantes , Redes e Vias Metabólicas/genética , Oxigenases de Função Mista
14.
Saudi J Biol Sci ; 29(3): 1313-1321, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280582

RESUMO

The enhanced understanding of chloroplast genomics would facilitate various biotechnology applications; however, the chloroplast (cp) genome / plastome characteristics of plants like Fagonia indica Burm.f. (family Zygophyllaceae), which have the capability to grow in extremely hot sand desert, have been rarely understood. The de novo genome sequence of F. indica using the Illumina high-throughput sequencing technology determined 128,379 bp long cp genome, encode 115 unique coding genes. The present study added the evidence of the loss of a copy of the IR in the cp genome of the taxa capable to grow in the hot sand desert. The maximum likelihood analysis revealed two distinct sub-clades i.e. Krameriaceae and Zygophyllaceae of the order Zygophyllales, nested within fabids.

15.
J King Saud Univ Sci ; 34(2): 101810, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35002180

RESUMO

The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.

16.
J King Saud Univ Sci ; 34(2): 101773, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955621

RESUMO

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world jeopardizing the global economy and health. The rapid proliferation and infectivity of the virus can be attributed to many accumulating mutations in the spike protein leading to continuous generation of variants. The spike protein is a glycoprotein that recognizes and binds to cell surface receptor known as angiotensin-converting enzyme 2 (ACE2) leading to the fusion of the viral and host cell membranes and entry into the host cells. These circulating variants in the population have greatly impacted the virulence, transmissibility, and immunological evasion of the host. The present study is aimed at understanding the impact of the major mutations (L452R, T478K and N501Y) in the receptor-binding domain (RBD) of spike protein and their consequences on the binding affinity to human ACE2 through protein-protein docking and molecular dynamics simulation approaches. Protein-protein docking and Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) binding free energy analysis reveal that the spike mutants-L452R, T478K and N501Y have a higher binding affinity to human ACE2 as compared to the native spike protein. The increase in the number of interface residues, interface area and intermolecular forces such as hydrogen bonds, salt bridges and non-bonded contacts corroborated with the increase in the binding affinity of the spike mutants to ACE2. Further, 75 ns all-atom molecular dynamics simulation investigations show variations in the geometric properties such as root mean square deviation (RMSD), radius of gyration (Rg), total solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs) in the mutant spike:ACE2 complexes with respect to the native spike:ACE2 complex. Therefore, the findings of this study unravel plausible molecular mechanisms of increase in binding affinity of spike mutants (L452R, T478K and N501Y) to human ACE2 leading to higher virulence and infectivity of emerging SARS-CoV-2 variants. The study will further aid in designing novel therapeutics targeting the interface residues between spike protein and ACE2 receptor.

17.
Curr Pharm Biotechnol ; 23(7): 959-969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34097590

RESUMO

BACKGROUND: There has been tremendous pressure on healthcare facilities globally due to the recent emergence of novel coronavirus infection known as COVID-19 and its rapid spread across the continents. The lack of effective therapeutics for the management of the pandemic calls for the discovery of new drugs and vaccines. OBJECTIVE: In the present study, a chemical library was screened for molecules against three coronavirus 3CL-like protease enzymes (SARS-CoV-2 3CLpro, SARS-CoV 3CLpro and MERS-CoV 3CLpro), which are a key player in the viral replication cycle. METHODS: Extensive computational methods such as virtual screening and molecular docking were employed in this study. RESULTS: Two lead molecules, ZINC08825480 (4-bromo-N'-{(E)-[1-phenyl-3-(pyridin-3-yl)-1H-pyrazol- 4-yl]methylidene}benzene-1-sulfonohydrazide) and ZINC72009942 (N-[[2-[[(3S)-3-methyl-1-piperidyl] methyl]phenyl]methyl]-6-oxo-1-(p-tolyl)-4,5-dihydro-1,2,4-triazine-3-carboxamide), were identified with better affinity with the three target enzymes as compared to the approved antiviral drugs. Both the lead molecules possessed favorable drug-like properties, fit well into the active site pocket close to His- Cys dyad and showed a good number of hydrogen bonds with the backbone as well as side chains of key amino acid residues. CONCLUSION: Thus, the present study offers two novel chemical entities against coronavirus infections which can be validated through various biological assays.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Antivirais/química , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2
18.
Saudi J Biol Sci ; 29(1): 65-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34849082

RESUMO

Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot is a perennial herb in the Zingiberaceae family with anticancer, anti-leptospiral, anti-inflammatory, antioxidant, antiulcer, and anti-herpes viral activities. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitory activity of B. rotunda extract has been recently found, the active compounds contributing to this activity are yet unknown. The main protease (Mpro) enzyme is one of the most well established therapeutic targets among coronaviruses which plays a vital role in the maturation and cleavage of polyproteins during viral replication. The current work aims to identify active phytochemical substances from B. rotunda extract that can inhibit the replication of SARS-CoV-2 by using a combined molecular docking and dynamic simulation approaches. The virtual screening experiment revealed that fifteen molecules out of twenty-three major active compounds in the plant extract have acceptable drug-like characteristics. Alpinetin, Pinocembrin, and Pinostrobin have binding energies of -7.51 kcal/mol, -7.21 kcal/mol, and -7.18 kcal/mol, respectively, and can suppress Mpro activity. The stability of the simulated complexes of the lead compounds with the drug-receptor is demonstrated by 100-ns MD simulations. The binding free energies study utilizing molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) show that the compounds and Mpro enzyme have favourable thermodynamic interactions, which are majorly driven by van der Waals forces. Thus, the selected bioactive phytochemicals from B. rotunda might be used as anti-SARS-CoV-2 candidates that target the Mpro enzyme.

19.
Saudi J Biol Sci ; 29(1): 53-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34548836

RESUMO

Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (ß-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from -5 to -6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from -6.9 to -9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from -9.7 to -12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.

20.
PhytoKeys ; 183: 55-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720630

RESUMO

Lectotypes are designated here for the following nine validly published names: Jasminumalongense, J.anodontum, J.eberhardtii, J.harmandianum, J.lang, J.laxiflorum, J.pierreanum, J.rufohirtum, and J.sinense. Jasminumlang is reinstated as a distinct species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA