Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463549

RESUMO

This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves (GFWs) generated by a membrane acoustic waveguide actuator (MAWA). By harnessing the potential of GFWs, cavity-agnostic advanced particle manipulation functions are achieved, unlocking new avenues for microfluidic systems and lab-on-a-chip development. The localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising characteristics. Unlike traditional acoustofluidic technologies, the GFWs propagating on the MAWA's membrane waveguide allow for cavity-agnostic particle manipulation, irrespective of the resonant properties of the fluidic chamber. Moreover, the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane waveguide. Experimental demonstrations using two types of particles include in-sessile-droplet particle transport, mixing, and spatial separation based on particle diameter, along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS channels. These experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA's compatibility with existing microfluidic systems.

2.
Lab Chip ; 23(19): 4343-4351, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37718921

RESUMO

Trace biological sample detection is critical for the analysis of pathologies in biomedicine. Integration of microfluidic manipulation techniques typically strengthens biosensing performance. For instance, using isothermal amplification reactions to sense trace miRNA in peripheral circulation lacks a sufficiently complex pretreatment process that limits the sensitivity of on-chip detection. Herein we propose an orthogonal tunable acoustic tweezer (OTAT) to simultaneously actuate the transportation and centrifugation of µ-droplets on a single device. The OTAT enables diversified modes of droplet transportation such as unidirectional transport, multi-direction transport, round-trip transport, tilt angle movement, multi-droplet fusion, and continuous centrifugation of the dynamic droplets simultaneously. The multiplicity of modalities enables the focusing of a loaded analyte at the center of the droplet or constant rotation about the center axis of the droplet. We herein demonstrate the OTAT's ability to actuate transportation, fusion, and centrifugation-based pretreatment of two biological sample droplets loaded with miRNA biomarkers and multiple mixtures, as well as facilitating the increase of fluorescence detection sensitivity by an order of magnitude compared to traditional tube reaction methods. The results herein demonstrate the OTAT-based droplet acoustofluidic platform's ability to combine a wide range of biosensing mechanisms and provide a higher accuracy of detection for one-stop point-of-care disease diagnosis.


Assuntos
Acústica , MicroRNAs , Centrifugação , Rotação , Biomarcadores
3.
Lab Chip ; 23(7): 1865-1878, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852544

RESUMO

Precision manipulation techniques in microfluidics often rely on ultrasonic actuators to generate displacement and pressure fields in a liquid. However, strategies to enhance and confine the acoustofluidic forces often work against miniaturization and reproducibility in fabrication. This study presents microfabricated piezoelectric thin film membranes made via silicon diffusion for guided flexural wave generation as promising acoustofluidic actuators with low frequency, voltage, and power requirements. The guided wave propagation can be dynamically controlled to tune and confine the induced acoustofluidic radiation force and streaming. This provides for highly localized dynamic particle manipulation functionalities such as multidirectional transport, patterning, and trapping. The device combines the advantages of microfabrication and advanced acoustofluidic capabilities into a miniature "drop-and-actuate" chip that is mechanically robust and features a high degree of reproducibility for large-scale production. The membrane acoustic waveguide actuators offer a promising pathway for acoustofluidic applications such as biosensing, organoid production, and in situ analyte transport.

4.
Microsyst Nanoeng ; 7: 61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567773

RESUMO

The ability to weigh microsubstances present in low concentrations is an important tool for environmental monitoring and chemical analysis. For instance, developing a rapid analysis platform that identifies the material type of microplastics in seawater would help evaluate the potential toxicity to marine organisms. In this study, we demonstrate the integration of two different techniques that bring together the functions of sparse particle localization and miniaturized mass sensing on a microelectromechanical system (MEMS) chip for enhanced detection and minimization of negative measurements. The droplet sample for analysis is loaded onto the MEMS chip containing a resonant mass sensor. Through the coupling of a surface acoustic wave (SAW) from a SAW transducer into the chip, the initially dispersed microparticles in the droplet are localized over the detection area of the MEMS sensor, which is only 200 µm wide. The accreted mass of the particles is then calibrated against the resulting shift in resonant frequency of the sensor. The SAW device and MEMS chip are detachable after use, allowing the reuse of the SAW device part of the setup instead of the disposal of both parts. Our platform maintains the strengths of noncontact and label-free dual-chip acoustofluidic devices, demonstrating for the first time an integrated microparticle manipulation and real-time mass measurement platform useful for the analysis of sparse microsubstances.

5.
Analyst ; 146(10): 3280-3288, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33999056

RESUMO

Acoustofluidic platforms for cell manipulation benefit from being contactless and label-free at potentially low cost. Particle concentration in a droplet relies on augmenting spatial asymmetry in the acoustic field, which is difficult to reproduce reliably. Etching periodic patterns into a chip to create acoustic band gaps is an attractive approach to spatially modify the acoustic field. However, the sensitivity of acoustic band structures to geometrical tolerances requires the use of costly microfabrication processes. In this work, we demonstrate particle concentration across a range of periodic structure patterns fabricated with a laser-cutting tool, suitable for low-cost and low-volume rapid prototyping. The relaxation on precision is underscored by experimental results of equally efficient particle concentration outside band gaps and even in their absence, allowing operation over a range of frequencies independent of acoustic band gaps. These results are significant by indicating the potential of extending the proposed method from the microscale (e.g. tumor cells) to the nanoscale (e.g. bacteria) by scaling up the frequency without being limited by fabrication capabilities. We demonstrate the device's high degree of biocompatibility to illustrate the method's applicability in the biomedical field for applications such as basic biochemical analysis and in vitro diagnosis.


Assuntos
Acústica , Nanopartículas , Lasers , Microtecnologia
6.
Analyst ; 145(23): 7752-7758, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33001065

RESUMO

This work describes a two-chip acoustofluidic platform for two-dimensional (2D) manipulation of microparticles in a closed microchamber on a reusable surface acoustic wave (SAW) device. This platform comprises two microfabricated chips: (1) a detachable silicon superstrate enclosed by a PDMS microfluidic chamber and (2) a reusable SAW device for generating standing SAW (SSAW), which is typically an expensive component. Critical to such a two-chip acoustofluidic platform is the selection of a suitable coupling agent at the interface of the SAW device and superstrate. To this end, we applied a polymer thin film as a coupling agent that balances between acoustic coupling efficiency, stability over time, and reusability. Recycling of the SAW device lowers the cost-barrier for acoustofluidic particle manipulation. The SSAW is transmitted into the silicon superstrate via the coupling agent to form a standing Lamb wave (SLW) to trap and move microparticles. The reported two-chip strategy enables the single-use microfluidic superstrates to avoid chemical and biological contaminations, while maintaining the merits of acoustofluidic manipulation of being noncontact and label-free and applicable to a wide range of microparticles with different shapes, density, polarity, and electrical properties.

7.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887409

RESUMO

Over the last two decades, piezoelectric resonant sensors based on micro-electromechanical systems (MEMS) technologies have been extensively studied as such sensors offer several unique benefits, such as small form factor, high sensitivity, low noise performance and fabrication compatibility with mainstream integrated circuit technologies. One key challenge for piezoelectric MEMS resonant sensors is enhancing their quality factors (Qs) to improve the resolution of these resonant sensors. Apart from sensing applications, large values of Qs are also demanded when using piezoelectric MEMS resonators to build high-frequency oscillators and radio frequency (RF) filters due to the fact that high-Q MEMS resonators favor lowering close-to-carrier phase noise in oscillators and sharpening roll-off characteristics in RF filters. Pursuant to boosting Q, it is essential to elucidate the dominant dissipation mechanisms that set the Q of the resonator. Based upon these insights on dissipation, Q-enhancement strategies can then be designed to target and suppress the identified dominant losses. This paper provides a comprehensive review of the substantial progress that has been made during the last two decades for dissipation analysis methods and Q-enhancement strategies of piezoelectric MEMS laterally vibrating resonators.

8.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575658

RESUMO

A technique and electronic circuit for contactless electromagnetic interrogation of piezoelectric micro-electromechanical system (MEMS) resonator sensors are proposed. The adopted resonator is an aluminum-nitride (AlN) thin-film piezoelectric-on-silicon (TPoS) disk vibrating in radial contour mode at about 6.3 MHz. The MEMS resonator is operated in one-port configuration and it is connected to a spiral coil, forming the sensor unit. A proximate electronic interrogation unit is electromagnetically coupled through a readout coil to the sensor unit. The proposed technique exploits interleaved excitation and detection phases of the MEMS resonator. A tailored electronic circuit manages the periodic switching between the excitation phase, where it generates the excitation signal driving the readout coil, and the detection phase, where it senses the transient decaying response of the resonator by measuring through a high-impedance amplifier the voltage induced back across the readout coil. This approach advantageously ensures that the readout frequency of the MEMS resonator is first order independent of the interrogation distance between the readout and sensor coils. The reported experimental results show successful contactless readout of the MEMS resonator independently from the interrogation distance over a range of 12 mm, and the application as a resonant sensor for ambient temperature and as a resonant acoustic-load sensor to detect and track the deposition and evaporation processes of water microdroplets on the MEMS resonator surface.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30843828

RESUMO

This paper describes the realization of piezoelectric-on-silicon lateral field Lorentz force magnetometers (LFMs) that target operation in ambient pressure instead of vacuum. Specifically, we describe two device topologies based on the out-of-plane resonant vibration modes. The first is based on a classic cantilever while the other is based on a corner-flapping square plate. In both topologies, piezoelectric transduction is exploited to enhance the sensitivity of the device compared to prevailing approaches to microelectromechanical system (MEMS) LFMs based on capacitive output interfaces. We show that the responsivity of the corner-flapping square plate topology (12026 ppm/T) is 8.5 times higher than a state-of-the-art lateral field LFM based on a capacitive output interface even without relying on vacuum. We here define responsivity as the output sense current per unit magnetic field density normalized over the input excitation current.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30296218

RESUMO

We present a unique lateral shear resonance mode excited in a microelectromechanical (MEM) disk resonator. We refer to this proposed mode as the button-like (BL) mode. The BL mode has a characteristic lateral strain profile (based on the sum of orthogonal strain components in the plane of fabrication) which resembles a shirt button, hence our choice of name for this mode. The strain profile of the BL mode is highly suited for piezoelectric transduction. Like the more widely reported wine-glass (WG) or elliptical mode, the BL mode offers feedthrough cancellation through fully differential transduction. However, compared to the WG mode, the BL mode possesses a higher coupling coefficient ( [Formula: see text]) and a higher quality ( Q ) factor for the same disk radius. These advantages make the BL mode highly attractive for realizing electrically addressed MEM resonators for liquid-phase sensing. This paper examines various design aspects pertaining to the BL mode: tether geometry, characterization setup, size of disk, and even the effect of the gap around the disk on the Q factor. The highest Q factor measured in water is 410 based on a disk with a radius of [Formula: see text]. The lowest motional resistance in water is 1.36 [Formula: see text] based on a disk with a radius of [Formula: see text].

11.
Micromachines (Basel) ; 9(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30424346

RESUMO

This paper demonstrates the four fold enhancement in quality factor (Q) of a very high frequency (VHF) band piezoelectric Aluminum Nitride (AlN) on Silicon (Si) Lamb mode resonator by applying a unique wide acoustic bandgap (ABG) phononic crystal (PnC) at the anchoring boundaries of the resonator. The PnC unit cell topology, based on a solid disk, is characterized by a wide ABG of 120 MHz around a center frequency of 144.7 MHz from the experiments. The resulting wide ABG described in this work allows for greater enhancement in Q compared to previously reported PnC cell topologies characterized by narrower ABGs. The effect of geometrical variations to the proposed PnC cells on their corresponding ABGs are described through simulations and validated by transmission measurements of fabricated delay lines that incorporate these solid disk PnCs. Experiments demonstrate that widening the ABG associated with the PnC described herein provides for higher Q.

12.
Micromachines (Basel) ; 7(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30404333

RESUMO

This paper is a review of the remarkable progress that has been made during the past few decades in design, modeling, and fabrication of micromachined resonators. Although micro-resonators have come a long way since their early days of development, they are yet to fulfill the rightful vision of their pervasive use across a wide variety of applications. This is partially due to the complexities associated with the physics that limit their performance, the intricacies involved in the processes that are used in their manufacturing, and the trade-offs in using different transduction mechanisms for their implementation. This work is intended to offer a brief introduction to all such details with references to the most influential contributions in the field for those interested in a deeper understanding of the material.

13.
J Nanosci Nanotechnol ; 10(11): 7533-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21137976

RESUMO

This paper demonstrates an accurate model to predict the overall effective mass in micro- and nanomechanical resonators with non-uniform deformation along the transduction area. The model is verified experimentally through parameter extraction on various types of resonators with an error less than 3% well within the bounds dictated by manufacturing tolerances. Based on the model, an optimization of transduction electrode designs is proposed for micro- and nanomechanical resonators vibrating in the fabrication plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA