Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4047, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422498

RESUMO

The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm-2), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah-1 (2.44 g Ah-1 including mass of composite layer) or 100 cycles at 1.28 g Ah-1 (1.57 g Ah-1 including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content.


Assuntos
Líquidos Corporais , Lítio , Eletrólitos , Íons , Metais
2.
ACS Omega ; 6(48): 33224-33230, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901674

RESUMO

Facile approaches for creating thin-film scintillators with high spatial resolutions and variable shapes are required to broaden the applicability of high-resolution X-ray imaging. In this study, a transparent nano-polycrystalline ZnWO4 thin-film scintillator was fabricated by thermal evaporation for high-resolution X-ray imaging. The scintillator is composed of nano-sized grains smaller than the optical wavelength range to minimize optical scattering. The high transparency of the scintillators affords a sufficiently high spatial resolution to resolve the 2 µm line and space patterns when used in a high-resolution X-ray imaging system with an effective pixel size of 650 nm. The thermal evaporation method is a convenient approach for depositing thin and uniform films on complex substrates. ZnWO4 thin-film scintillators with various shapes, such as pixelated and curved, were fabricated via thermal evaporation. The results show that the transparent nano-polycrystalline ZnWO4 thin-film scintillator deposited through thermal evaporation has a potential for use in various high-resolution X-ray imaging applications.

3.
Nat Commun ; 12(1): 5537, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545077

RESUMO

The long-term cycling of anode-free Li-metal cells (i.e., cells where the negative electrode is in situ formed by electrodeposition on an electronically conductive matrix of lithium sourced from the positive electrode) using a liquid electrolyte is affected by the formation of an inhomogeneous solid electrolyte interphase (SEI) on the current collector and irregular Li deposition. To circumvent these issues, we report an atomically defective carbon current collector where multivacancy defects induce homogeneous SEI formation on the current collector and uniform Li nucleation and growth to obtain a dense Li morphology. Via simulations and experimental measurements and analyses, we demonstrate the beneficial effect of electron deficiency on the Li hosting behavior of the carbon current collector. Furthermore, we report the results of testing anode-free coin cells comprising a multivacancy defective carbon current collector, a LixNi0.8Co0.1Mn0.1-based cathode and a nonaqueous Li-containing electrolyte solution. These cells retain 90% of their initial capacity for over 50 cycles under lean electrolyte conditions.

4.
Opt Express ; 29(13): 19945-19954, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266094

RESUMO

A simple one-step approach to producing a distributed feedback (DFB) laser through selective irradiation of the gain medium, MEH-PPV, is presented. Electron irradiation alters the refractive index of MEH-PPV, thus, direct patterning by electron irradiation can be applied to create a periodic diffraction grating. The non-irradiated regions of MEH-PPV serve as the primary gain medium, while the irradiated regions of MEH-PPV provide the refractive index difference required to fabricate a DFB laser. This method was successfully applied to achieve lasing with a relatively low lasing threshold of 3 kW/cm2or 1.8 µJ/cm2 (pulse width: 600 ps). Furthermore, the lasing wavelength can be finely tuned by simply adjusting the grating period. In stark contrast to the simple one-step process described in this work, conventional procedures for the fabrication of DFB lasers involve multiple steps of varying complexity, including mold creation and careful coating of the substrate with the gain medium.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803813

RESUMO

Nanocomposites comprising high-density polyethylene (HDPE) and boehmite (BA) nanoparticles were prepared by melt blending and subsequently irradiated with electrons. Electron irradiation of HDPE causes crosslinking and, in the presence of BA, generates ketone functional groups. The functional groups can then form hydrogen bonds with the hydroxyl groups on the surface of the BA. Additionally, if the BA is surface modified by vinyltrimethoxysilane (vBA), it can covalently bond with the HDPE by irradiation-induced radical grafting. The strong covalent bonds generated by electron beam irradiation allow the desirable properties of the nanofiller to be transferred to the rest of the nanocomposite. Since EB irradiation produces a great number of strong covalent bonds between vBA nanoparticles and HDPE, the modulus of elasticity, yield strength, and resistance to thermal shrinkage are enhanced by electron irradiation.

6.
Small ; 17(21): e2008059, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33882616

RESUMO

Aqueous zinc (Zn) metal batteries (ZMBs) are considered a promising candidate for grid-scale energy storage due to their freedom from fire hazards. However, a limited reversibility of Zn metal electrode caused by dendritic Zn growth has hindered the advent of high-capacity Zn metal batteries (>4 mAh cm-2 ). Herein, it is reported that fast electrokinetic Zn-ion transport extremely improves the Zn metal reversibility. It is revealed that a negatively charged porous layer (NPL) provides the electrokinetic Zn-ion transport by surface conduction, and consequently impedes the depletion of Zn-ion on electrode surface as indicated by numerical simulations and overlimiting current behavior. Due to the quick Zn-ion delivery, a dendrite-free and densely packed Zn metal deposit is accommodated inside its pores. With the introduction of the NPL, the cycling stability of Zn symmetric cell is enhanced by 21 times at 10 mA cm-2 /10 mAh cm-2 . Average Coulombic efficiency of 99.6% is achieved over 500 cycles for electrodeposition/stripping at 30 mA cm-2 /5 mAh cm-2 on NPL-Cu electrode. Furthermore, a high-capacity Zn/V2 O5 full cell with the NPL exhibits an extraordinary stability over 1000 cycles at a capacity of 4.8 mAh cm-2 .

7.
Nanomaterials (Basel) ; 10(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878007

RESUMO

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 µm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.

8.
Rev Sci Instrum ; 91(4): 043703, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357756

RESUMO

A new concept for a non-destructive testing device using a novel carbon nanotube (CNT) based miniature x-ray tube is proposed. The device can be used for small-scale internal inspection of objects. To investigate the effectiveness of the proposed concept, the device was fabricated and its performance was systematically analyzed. The non-destructive testing device consists of a CNT based miniature x-ray tube, a scintillator, an optical lens, and a detector. The size of the focal spot needed to identify objects as small as 5 µm was calculated through simulation. An electron optics simulation software, E-GUN, was used to optimize the geometries of both the focusing cup and the x-ray target to achieve the desired focal spot size of the x-ray tube. The CNT based miniature x-ray tube was fabricated using the brazing process, and an NdFeB focusing lens was used to further reduce the focal spot size. XR images were obtained using the fabricated device and the spatial resolutions of the images were evaluated using the modulation transfer function (MTF). The fields of view (FOVs) per probe are 7.1 mm2 and 1.8 mm2 when using a 5× optical lens and a 10× optical lens, respectively. The FOV can be increased by increasing the number of probes incorporated into the device. MTF10 values were determined to be 105 lp/mm and 230 lp/mm when using the 5× optical lens and 10× optical lens, respectively. By using an optical lens to enlarge the XR images, the effect of focal spot was minimized and clear XR images were obtained.

9.
Adv Mater ; 31(52): e1904524, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650656

RESUMO

Aqueous Zn-Br batteries (ZBBs) offer promising next-generation high-density energy storage for energy storage systems, along with distinctive cost effectiveness particularly in membraneless and flowless (MLFL) form. Unfortunately, they generally suffer from uncontrolled diffusion of corrosive bromine components, which cause serious self-discharge and capacity fade. An MLFL-ZBB is presented that fundamentally tackles the problem of bromine crossover by converting bromine to the polybromide anion using protonated pyridinic nitrogen doped microporous carbon decorated on graphite felt (NGF). The NGF electrodes efficiently capture bromine and polybromide anions at the abundant protonated nitrogen dopant sites within micropores and facilitate effective conversion of bromine into polybromides through electrochemical-chemical growth mechanism. The MLFL-ZBBs with NGF exhibit an extraordinary stability over 1000 charge/discharge cycles, with an energy efficiency over 80%, the highest value ever reported among membraneless Zn-Br batteries. Judicious engineering of an atomistically designed nanostructured electrode offers a novel design platform for low cost, high voltage, long-life cycle aqueous hybrid Zn-Br batteries.

10.
Nat Commun ; 10(1): 4412, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562304

RESUMO

The vanadium redox flow battery is considered one of the most promising candidates for use in large-scale energy storage systems. However, its commercialization has been hindered due to the high manufacturing cost of the vanadium electrolyte, which is currently prepared using a costly electrolysis method with limited productivity. In this work, we present a simpler method for chemical production of impurity-free V3.5+ electrolyte by utilizing formic acid as a reducing agent and Pt/C as a catalyst. With the catalytic reduction of V4+ electrolyte, a high quality V3.5+ electrolyte was successfully produced and excellent cell performance was achieved. Based on the result, a prototype catalytic reactor employing Pt/C-decorated carbon felt was designed, and high-speed, continuous production of V3.5+ electrolyte in this manner was demonstrated with the reactor. This invention offers a simple but practical strategy to reduce the production cost of V3.5+ electrolyte while retaining quality that is adequate for high-performance operations.

11.
Nat Commun ; 10(1): 188, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643115

RESUMO

Uncontrolled growth of insulating lithium sulfide leads to passivation of sulfur cathodes, which limits high sulfur utilization in lithium-sulfur batteries. Sulfur utilization can be augmented in electrolytes based on solvents with high Gutmann Donor Number; however, violent lithium metal corrosion is a drawback. Here we report that particulate lithium sulfide growth can be achieved using a salt anion with a high donor number, such as bromide or triflate. The use of bromide leads to ~95 % sulfur utilization by suppressing electrode passivation. More importantly, the electrolytes with high-donor-number salt anions are notably compatible with lithium metal electrodes. The approach enables a high sulfur-loaded cell with areal capacity higher than 4 mA h cm-2 and high sulfur utilization ( > 90 %). This work offers a simple but practical strategy to modulate lithium sulfide growth, while conserving stability for high-performance lithium-sulfur batteries.

12.
Med Phys ; 46(2): 448-455, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548607

RESUMO

PURPOSE: Vaginal applicators for a novel miniature x-ray tube were developed using three-dimensional (3D) printing to be used in brachytherapy of endometrial cancers. METHODS: Cylindrical vaginal applicators with various diameters, lengths, and infill percentages (IFPs) were fabricated using a 3D printer. X-ray dose distributions and depth-dose profiles were calculated using a Monte Carlo simulation. The performances of the applicators were evaluated by measuring and analyzing the dosimetric characteristics of x rays generated from the miniature x-ray tube equipped with the applicators. RESULTS: Quite uniform dose distributions around the applicators were achieved by optimizing the dwell positions and the dwell times of the miniature x-ray tube inside the applicators. In addition, identical absolute dose and depth-dose profiles were obtained through the control of the IFP values even though different-sized applicators are used. CONCLUSION: The presented 3D printing technique provides an efficient approach to provide vaginal applicators with optimal IFPs that allow consistent treatment time for patients of varying vaginal canal size.


Assuntos
Braquiterapia/instrumentação , Neoplasias do Endométrio/radioterapia , Impressão Tridimensional , Vagina , Feminino , Humanos , Dosagem Radioterapêutica , Fatores de Tempo
13.
Med Phys ; 45(1): 29-36, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29106708

RESUMO

PURPOSE: We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. METHODS: The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. RESULTS: The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. CONCLUSIONS: The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers.


Assuntos
Braquiterapia/instrumentação , Elétrons , Nanotubos de Carbono , Neoplasias Cutâneas/radioterapia , Método de Monte Carlo , Dosagem Radioterapêutica , Raios X
14.
Sci Rep ; 7(1): 10503, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874731

RESUMO

In this work, we present a 16 µm-thick Nafion-filled porous membrane for Zn/Br redox flow batteries (ZBBs). By using molecular dynamics simulation and dynamic light scattering analysis, we rationally design Nafion solution for Nafion impregnation into a porous polypropylene (PP) separator. A void-free Nafion/PP membrane is successfully fabricated by using NMP as a solvent for the Nafion solution. The resulting membrane shows a smaller area specific resistance in comparison with 600 µm-thick, commercial SF-600 porous membrane. Due to its dense morphology, Br2 diffusivity of the Nafion/PP membrane is two orders of magnitude lower than that of SF-600, resulting in a comparable Br2 crossover in spite of 37.5 times smaller membrane thickness. As a result, the ZBB based on the Nafion/PP membrane exhibits a higher energy efficiency, demonstrating that ion exchange membrane can outperform the conventional porous membrane by reducing the membrane thickness with inexpensive porous substrate.

15.
Environ Sci Technol ; 49(14): 8872-7, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26114376

RESUMO

A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.


Assuntos
Cátions/química , Diálise/métodos , Eletricidade , Membranas Artificiais , Condutividade Elétrica , Troca Iônica , Microscopia de Força Atômica , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA