Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37239060

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease which requires continuous treatment due to its relapsing nature. The current treatment includes steroids and nonsteroidal agents targeting inflammation but long-term administration causes various side effects such as skin atrophy, hirsutism, hypertension and diarrhea. Thus, there is an unmet need for safer and effective therapeutic agents in the treatment of AD. Peptides are small biomolecule drugs which are highly potent and remarkably have less side effects. Parnassin is a tetrapeptide with predicted anti-microbial activity curated from Parnassius bremeri transcriptome data. In this study, we confirmed the effect of parnassin on AD using a DNCB-induced AD mouse model and TNF-α/IFN-γ-stimulated HaCaT cells. In the AD mouse model, topical administration of parnassin improved skin lesions and symptoms in AD mice, such as epidermal thickening and mast cell infiltration, similar to the existing treatment, dexamethasone, and did not affect body weight, or the size and weight of spleen. In TNF-α/IFN-γ-stimulated HaCaT cells, parnassin inhibited the expression of Th2-type chemokine CCL17 and CCL22 genes by suppressing JAK2 and p38 MAPK signaling kinases and their downstream transcription factor STAT1. Parnassin also significantly reduced the gene expression of TSLP and IL-31, which are pruritus-inducing cytokines. These findings suggested that parnassin alleviates AD-like lesions via its immunomodulatory effects and can be used as a candidate drug for the prevention and treatment of AD because it is safer than existing treatments.

2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232838

RESUMO

Parnassius bremeri (P. bremeri), a member of the genus Snow Apollo in the swallowtail family (Papilionidae), is a high alpine butterfly that lives in Russia, Korea, and China. It is an endangered wildlife (Class I) in South Korea and is a globally endangered species. The lack of transcriptomic and genomic resources of P. bremeri significantly hinders the study of its population genetics and conservation. The detailed information of the developmental stage-specific gene expression patterns of P. bremeri is of great demand for its conservation. However, the molecular mechanism underlying the metamorphic development of P. bremeri is still unknown. In the present study, the differentially expressed genes (DEGs) across the metamorphic developmental stages were compared using high-throughput transcriptome sequencing. We identified a total of 72,161 DEGs from eight comparisons. GO enrichment analysis showed that a range of DEGs were responsible for cuticle development and the melanin biosynthetic pathway during larval development. Pathway analysis suggested that the signaling pathways, such as the Wnt signaling pathway, hedgehog signaling pathway and Notch signaling pathway, are regulated during the developmental stages of P. bremeri. Furthermore, sensory receptors were also activated, especially during the larval to adult transition stage. Collectively, the results of this study provide a preliminary foundation and understanding of the molecular mechanism in their transcriptomes for further research on the metamorphic development of P. bremeri.


Assuntos
Borboletas , Animais , Borboletas/genética , Perfilação da Expressão Gênica , Proteínas Hedgehog/genética , Melaninas/genética , Transcriptoma
3.
Insects ; 12(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069966

RESUMO

Classical antibiotics are the foremost treatment strategy against microbial infections. Overuse of this has led to the evolution of antimicrobial resistance. Antimicrobial peptides (AMPs) are natural defense elements present across many species including humans, insects, bacteria, and plants. Insect AMPs are our area of interest, because of their stronger abilities in host defense. We have deciphered AMPs from an endangered species Parnassius bremeri, commonly known as the red spotted apollo butterfly. It belongs to the second largest insect order Lepidoptera, comprised of butterflies and moths, and lives in the high altitudes of Russia, China, and Korea. We aimed at identifying the AMPs from the larvae stages. The rationale of choosing this stage is that the P. bremeri larvae development occurs at extremely low temperature conditions, which might serve as external stimuli for AMP production. RNA was isolated from larvae (L1 to L5) instar stages and subjected to next generation sequencing. The transcriptomes obtained were curated in in-silico pipelines. The peptides obtained were screened for requisite AMP physicochemical properties and in vitro antimicrobial activity. With the sequential screening and validation, we obtained fifteen candidate AMPs. One peptide TPS-032 showed promising antimicrobial activity against Porphyromonas gingivalis, a primary causative organism of periodontitis.

4.
J Periodontal Implant Sci ; 41(5): 218-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22087412

RESUMO

PURPOSE: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. METHODS: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. RESULTS: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted r(2)=0.907, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). CONCLUSIONS: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA