Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Eur Spine J ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847817

RESUMO

BACKGROUND: Thoracic ossification of the ligamentum flavum (TOLF), a rare condition more prevalent in East Asia, is managed through open and endoscopic surgical approaches. Determining the superior surgical option remains unclear. This study assesses the safety and clinical outcomes associated with these approaches in TOLF patients. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic literature search up to August 5, 2023, across PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov. We included randomized controlled trials and cohort studies reporting complication rates, mJOA (modified Japanese Orthopedic Association) scores, JOA scores, VAS (Visual Analog Scale) scores, or hospitalization duration for both open and endoscopic surgeries in TOLF patients. RESULTS: We analyzed 37 studies encompassing 1,646 TOLF patients using a random-effects model. Our findings revealed a significant difference in complication rates (overall complication rates: 0.12; 95% CI: 0.07, 0.19; p < 0.01; I2: 69%; quality of evidence: moderate), with lower complication rates in the endoscopy group. However, no significant differences were observed in JOA scores (overall JOA: 8.35; 95% CI: 7.16, 9.54; p = 0.12; I2: 99%; quality of evidence: very low), VAS scores (overall VAS: 1.31; 95% CI: 1.03, 1.59; p = 0.35; I2: 91%; quality of evidence: very low), or hospitalization duration (hospital stay: 10.83 days; 95% CI: 6.86, 14.80; p = 0.35; I2: 91%; quality of evidence: very low) between the open and endoscopic groups. CONCLUSIONS: This meta-analysis reports lower complication rates and improved postoperative mJOA scores for endoscopic surgery in TOLF patients compared to open surgery. It represents the first comprehensive evaluation of clinical outcomes and safety of different surgical approaches for TOLF patients. Further randomized controlled trials are essential to validate these findings.

2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38558976

RESUMO

The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.

3.
J Chem Inf Model ; 64(6): 1778-1793, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38454785

RESUMO

Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.


Assuntos
Dopamina , Receptores de Dopamina D2 , Ligantes , Quimpirol , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo
4.
ACS Pharmacol Transl Sci ; 7(2): 515-532, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357284

RESUMO

Currently, there are no FDA-approved medications for the treatment of psychostimulant use disorders (PSUD). We have previously discovered "atypical" dopamine transporter (DAT) inhibitors that do not display psychostimulant-like behaviors and may be useful as medications to treat PSUD. Lead candidates (e.g., JJC8-091, 1) have shown promising in vivo profiles in rodents; however, reducing hERG (human ether-à-go-go-related gene) activity, a predictor of cardiotoxicity, has remained a challenge. Herein, a series of 30 (([1,1'-biphenyl]-2-yl)methyl)sulfinylalkyl alicyclic amines was synthesized and evaluated for DAT and serotonin transporter (SERT) binding affinities. A subset of analogues was tested for hERG activity, and the IC50 values were compared to those predicted by our hERG QSAR models, which showed robust predictive power. Multiparameter optimization scores (MPO > 3) indicated central nervous system (CNS) penetrability. Finally, comparison of affinities in human DAT and its Y156F and Y335A mutants suggested that several compounds prefer an inward facing conformation indicating an atypical DAT inhibitor profile.

5.
J Med Chem ; 67(1): 709-727, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117239

RESUMO

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Ratos , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Aminas/farmacologia , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Piperidinas/farmacologia
6.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014309

RESUMO

Effective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors including TM5e and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found pronounced outward tilting of TM6e in the D2R compared to the D3R in both experimental structures and simulations with ligands in different scaffolds. This tilting was drastically reduced in the simulations of the receptors bound with nonselective full agonist quinpirole, suggesting a misleading impact of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may obscure intrinsic divergence. In addition, our analysis showed that the impact of the nonconserved TM1 propagated to conserved Trp7.40 and Glu2.65, both are ligand binding residues. We also found that the D2R exhibited heightened flexibility compared to the D3R in the extracellular portions of TMs 5, 6, and 7, potentially associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting D2R or D3R with more precise pharmacological profiles.

7.
J Chem Inf Model ; 63(16): 5001-5017, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37540602

RESUMO

Aminergic receptors are G protein-coupled receptors (GPCRs) that transduce signals from small endogenous biogenic amines to regulate intracellular signaling pathways. Agonist binding in the ligand binding pocket on the extracellular side opens and prepares a cavity on the intracellular face of the receptors to interact with and activate G proteins and ß-arrestins. Here, by reviewing and analyzing all available aminergic receptor structures, we seek to identify activation-related conformational changes that are independent of the specific scaffold of the bound agonist, which we define as "activation conformational changes" (ACCs). While some common intracellular ACCs have been well-documented, identifying common extracellular ACCs, including those in the ligand binding pocket, is complicated by local adjustments to different ligand scaffolds. Our analysis shows no common ACCs at the extracellular ends of the transmembrane helices. Furthermore, the restricted access to the ligand binding pocket identified previously in some receptors is not universal. Notably, the Trp6.48 toggle switch and the Pro5.50-Ile3.40-Phe6.44 (PIF) motif at the bottom of the ligand binding pocket have previously been proposed to mediate the conformational consequences of ligand binding to the intracellular side of the receptors. Our analysis shows that common ACCs in the ligand binding pocket are associated with the PIF motif and nearby residues, including Trp6.48, but fails to support a shared rotamer toggle associated with activation. However, we identify two common rearrangements between the extracellular and middle subsegments, and propose a novel "activation switch" motif common to all aminergic receptors. This motif includes the middle subsegments of transmembrane helices 3, 5, and 6 and integrates both the PIF motif and Trp6.48.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Conformação Proteica , Ligantes , Receptores Acoplados a Proteínas G/química , Proteínas de Ligação ao GTP/metabolismo , Sítios de Ligação
8.
ACS Pharmacol Transl Sci ; 6(1): 151-170, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654757

RESUMO

We have developed and characterized a novel D2R antagonist with exceptional GPCR selectivity - ML321. In functional profiling screens of 168 different GPCRs, ML321 showed little activity beyond potent inhibition of the D2R and to a lesser extent the D3R, demonstrating excellent receptor selectivity. The D2R selectivity of ML321 may be related to the fact that, unlike other monoaminergic ligands, ML321 lacks a positively charged amine group and adopts a unique binding pose within the orthosteric binding site of the D2R. PET imaging studies in non-human primates demonstrated that ML321 penetrates the CNS and occupies the D2R in a dose-dependent manner. Behavioral paradigms in rats demonstrate that ML321 can selectively antagonize a D2R-mediated response (hypothermia) while not affecting a D3R-mediated response (yawning) using the same dose of drug, thus indicating exceptional in vivo selectivity. We also investigated the effects of ML321 in animal models that are predictive of antipsychotic efficacy in humans. We found that ML321 attenuates both amphetamine- and phencyclidine-induced locomotor activity and restored pre-pulse inhibition (PPI) of acoustic startle in a dose-dependent manner. Surprisingly, using doses that were maximally effective in both the locomotor and PPI studies, ML321 was relatively ineffective in promoting catalepsy. Kinetic studies revealed that ML321 exhibits slow-on and fast-off receptor binding rates, similar to those observed with atypical antipsychotics with reduced extrapyramidal side effects. Taken together, these observations suggest that ML321, or a derivative thereof, may exhibit ″atypical″ antipsychotic activity in humans with significantly fewer side effects than observed with the currently FDA-approved D2R antagonists.

9.
J Biol Chem ; 298(12): 102594, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244455

RESUMO

Adhesion G protein-coupled receptor latrophilin 3 (ADGRL3), a cell adhesion molecule highly expressed in the central nervous system, acts in synapse formation through trans interactions with its ligands. It is largely unknown if these interactions serve a purely adhesive function or can modulate G protein signaling. To assess how different structural elements of ADGRL3 (e.g., the adhesive domains, autoproteolytic cleavage site, or tethered agonist (TA)) impact receptor function, we require constructs that disrupt specific receptor features without impacting others. While we showed previously that mutating conserved Phe and Met residues in the TA of ADGRL3-C-terminal fragment (CTF), a CTF truncated to the G protein-coupled receptor proteolysis site, abolishes receptor-mediated G protein activation, we now find that autoproteolytic cleavage is disrupted in the full-length version of this construct. To identify a construct that disrupts TA-dependent activity without impacting proteolysis, we explored other mutations in the TA. We found that mutating the sixth and seventh residues of the TA, Leu and Met, to Ala impaired activity in a serum response element activity assay for both full-length and CTF constructs. We confirmed this activity loss results from impaired G protein coupling using an assay that acutely exposes the TA through controlled proteolysis. The ADGRL3 mutant expresses normally at the cell surface, and immunoblotting shows that it undergoes normal autoproteolysis. Thus, we found a construct that disrupts tethered agonism while retaining autoproteolytic cleavage, providing a tool to disentangle these functions in vivo. Our approach and specific findings are likely to be broadly applicable to other adhesion receptors.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Camundongos , Adesão Celular , Membrana Celular/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo
10.
Methods Mol Biol ; 2414: 151-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784037

RESUMO

Vaccines are regarded as the most cost-effective countermeasure against infectious diseases. One challenge often affecting vaccine development is antigenic diversity or pathogen heterogeneity. Different strains produce immunologically heterogeneous virulence factors, therefore an effective vaccine needs to induce broad-spectrum host immunity to provide cross-protection. Recent advances in genomics and proteomics, particularly computational biology and structural biology, establishes structural vaccinology and highlights the feasibility of developing effective and precision vaccines. Here, we introduce the epitope- and structure-based vaccinology platform multiepitope-fusion-antigen (MEFA), and provide instructions to generate polyvalent MEFA immunogens for vaccine development. Conceptually, MEFA combines epitope vaccinology and structural vaccinology to enable a protein immunogen to present heterogeneous antigenic domains (epitopes) and to induce broadly protective immunity against different virulence factors, strains or diseases. Methodologically, the MEFA platform first identifies a safe, structurally stable and strongly immunogenic backbone protein and immunodominant (ideally neutralizing or protective) epitopes from heterogeneous strains or virulence factors of interest. Then, assisted with protein modeling and molecule dynamic simulation, MEFA integrates heterogeneous epitopes into a backbone protein via epitope substitution for a polyvalent MEFA protein and mimics epitope native antigenicity. Finally, the MEFA protein is examined for broad immunogenicity in animal immunization, and assessed for potential application for multivalent vaccine development in preclinical studies.


Assuntos
Vacinas Combinadas , Animais , Biologia Computacional , Diarreia , Escherichia coli Enterotoxigênica/imunologia , Epitopos/genética , Infecções por Escherichia coli , Vacinologia , Fatores de Virulência/genética
11.
J Med Chem ; 64(20): 15313-15333, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34636551

RESUMO

The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.


Assuntos
Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Salicilamidas/síntese química , Salicilamidas/química , Relação Estrutura-Atividade
12.
J Chem Inf Model ; 61(9): 4266-4279, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34420294

RESUMO

Psychostimulant drugs, such as cocaine, inhibit dopamine reuptake via blockading the dopamine transporter (DAT), which is the primary mechanism underpinning their abuse. Atypical DAT inhibitors are dissimilar to cocaine and can block cocaine- or methamphetamine-induced behaviors, supporting their development as part of a treatment regimen for psychostimulant use disorders. When developing these atypical DAT inhibitors as medications, it is necessary to avoid off-target binding that can produce unwanted side effects or toxicities. In particular, the blockade of a potassium channel, human ether-a-go-go (hERG), can lead to potentially lethal ventricular tachycardia. In this study, we established a counter screening platform for DAT and against hERG binding by combining machine learning-based quantitative structure-activity relationship (QSAR) modeling, experimental validation, and molecular modeling and simulations. Our results show that the available data are adequate to establish robust QSAR models, as validated by chemical synthesis and pharmacological evaluation of a validation set of DAT inhibitors. Furthermore, the QSAR models based on subsets of the data according to experimental approaches used have predictive power as well, which opens the door to target specific functional states of a protein. Complementarily, our molecular modeling and simulations identified the structural elements responsible for a pair of DAT inhibitors having opposite binding affinity trends at DAT and hERG, which can be leveraged for rational optimization of lead atypical DAT inhibitors with desired pharmacological properties.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Éter , Humanos , Aprendizado de Máquina , Modelos Moleculares
13.
Educ Inf Technol (Dordr) ; 26(1): 49-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33100887

RESUMO

As asynchronous online discussions gain a broader usage due to the COVID-19 epidemic, the need for understanding of students' ideas from unstructured textual data becomes more pressing. In this experimental study, we examine the effects of recommendations on message quality and community formation from voluminous online discussions. Drawing on literature from group cognition, knowledge building discourse, and learning analytics, we calculate message quasi-quality index (QQI) scores based on message lexical complexity and topic-related keyword usage by participants in explaining their ideas. Furthermore, we examine the empirical evidence on the relationship between QQI scores and participants' interactions. Finally, we visualize network structures via sociograms and hierarchically cluster participants to identify subgroups. Our analysis of 281 messages finds that recommendations helped participants to write more messages that compared alternative viewpoints and refined preliminary ideas with higher QQI scores. Results also show that recommendations cultivated a sense of collective agency to increase the opportunity for creativity and reduce the likelihood that peripheral participants will be dissatisfied and fail to identify with a community. Theoretical contributions and practical implications are discussed.

14.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927660

RESUMO

Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase activity. Using C-P4H1 tetramer purified from the eukaryotic expression system, we showed that the Succinate-GloTM Hydroxylase assay was more sensitive for measuring C-P4H1 activity compared with the hydroxyproline colorimetric assay. Next, we performed high-throughput screening with the FDA-approved drug library and identified several new C-P4H1 inhibitors, including Silodosin and Ticlopidine. Silodosin and Ticlopidine inhibited C-P4H1 activity in a dose-dependent manner and suppressed collagen secretion and tumor invasion in 3D tissue culture. These C-P4H1 inhibitors provide new agents to test clinical potential of targeting C-P4H1 in suppressing cancer progression and metastasis.


Assuntos
Antineoplásicos/análise , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Prolil-Hidrolase/análise , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Indóis/química , Ticlopidina/química
15.
Elife ; 92020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31985399

RESUMO

By analyzing and simulating inactive conformations of the highly homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands.


Almost a third of prescribed drugs work by acting on a group of proteins known as GPCRs (short for G-protein coupled receptors), which help to transmit messages across the cell's outer barrier. The neurotransmitter dopamine, for instance, can act in the brain and body by attaching to dopamine receptors, a sub-family of GPCRs. The binding process changes the three-dimensional structure (or conformation) of the receptor from an inactive to active state, triggering a series of molecular events in the cell. However, GPCRs do not have a single 'on' or 'off' state; they can adopt different active shapes depending on the activating molecule they bind to, and this influences the type of molecular cascade that will take place in the cell. Some evidence also shows that classes of GPCRs can have different inactive structures; whether this is also the case for the dopamine D2 and D3 receptors remained unclear. Mapping out inactive conformations of receptors is important for drug discovery, as compounds called antagonists can bind to inactive receptors and interfere with their activation. Lane et al. proposed that different types of antagonists could prefer specific types of inactive conformations of the dopamine D2 and D3 receptors. Based on the structures of these two receptors, the conformations of D2 bound with the drugs risperidone and eticlopride (two dopamine antagonists) were simulated and compared. The results show that the inactive conformations of D2 were very different when it was bound to eticlopride as opposed to risperidone. In addition D2 and D3 showed a very similar conformation when attached to eticlopride. The two drugs also bound to the inactive receptors in overlapping but different locations. These computational findings, together with experimental validations, suggest that D2 and D3 exist in several inactive states that only allow the binding of specific drugs; these states could also reflect different degrees of inactivation. Overall, the work by Lane et al. contributes to a more refined understanding of the complex conformations of GPCRs, which could be helpful to screen and develop better drugs.


Assuntos
Agonistas de Dopamina , Antagonistas de Dopamina , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Sítios de Ligação , Agonistas de Dopamina/química , Agonistas de Dopamina/metabolismo , Antagonistas de Dopamina/química , Antagonistas de Dopamina/metabolismo , Descoberta de Drogas , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo , Risperidona/química , Risperidona/metabolismo , Salicilamidas/química , Salicilamidas/metabolismo
16.
ACS Nano ; 14(2): 1727-1737, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31995359

RESUMO

Conformational changes of proteins are essential to their functions. Yet it remains challenging to measure the amplitudes and time scales of protein motions. Here we show that the cytolysin A (ClyA) nanopore was used as a molecular tweezer to trap a single maltose-binding protein (MBP) within its lumen, which allows conformation changes to be monitored as electrical current fluctuations in real time. In contrast to the current two state binding model, the current measurements revealed three distinct ligand-bound states for MBP in the presence of reducing saccharides. Our analysis reveals that these three states represented MBP bound to different isomers of reducing sugars. These findings contribute to the understanding of the mechanism of substrate recognition by MBP and illustrate that the nanopore tweezer is a powerful, label-free, single-molecule approach for studying protein conformational dynamics under functional conditions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Proteínas Ligantes de Maltose/química , Nanoporos , Açúcares/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
17.
J Phys Chem Lett ; 9(24): 6985-6990, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30484656

RESUMO

A topological constraint model is developed to predict the compositional scaling of glass transition temperature ( Tg) in a metal-organic framework glass, agZIF-62 [Zn(Im2- xbIm x)]. A hierarchy of bond constraints is established using a combination of experimental results and molecular dynamic simulations with ReaxFF. The model can explain the topological origin of Tg as a function of the benzimidazolate concentration with an error of 3.5 K. The model is further extended to account for the effect of 5-methylbenzimidazolate, enabling calculation of a ternary diagram of Tg with a mixture of three organic ligands in an as-yet unsynthesized, hypothetical framework. We show that topological constraint theory is an effective tool for understanding the properties of metal-organic framework glasses.

18.
J Vaccines Vaccin ; 8(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28944092

RESUMO

Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children's diarrhea and travelers' diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1-CS3), CFA/IV (CS4-CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens.

19.
J Comput Chem ; 38(30): 2632-2640, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28841239

RESUMO

Recasting temperature replica exchange (T-RE) as a special case of Gibbs sampling has led to a simple and efficient scheme for enhanced mixing (Chodera and Shirts, J. Chem. Phys., 2011, 135, 194110). To critically examine if T-RE with independence sampling (T-REis) improves conformational sampling, we performed T-RE and T-REis simulations of ordered and disordered proteins using coarse-grained and atomistic models. The results demonstrate that T-REis effectively increase the replica mobility in temperatures space with minimal computational overhead, especially for folded proteins. However, enhanced mixing does not translate well into improved conformational sampling. The convergences of thermodynamic properties interested are similar, with slight improvements for T-REis of ordered systems. The study re-affirms the efficiency of T-RE does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational re-arrangements. Due to its simplicity and efficacy of enhanced mixing, T-REis is expected to be more effective when incorporated with various Hamiltonian-RE protocols. © 2017 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica
20.
J Comput Chem ; 38(16): 1332-1341, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28397268

RESUMO

Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and ß-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc.


Assuntos
Simulação por Computador , Modelos Moleculares , Peptídeos/química , Proteínas/química , Solventes/química , Sequência de Aminoácidos , Aminoácidos/química , Fenômenos Físicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA