Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plants (Basel) ; 12(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687413

RESUMO

Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.

2.
Biosens Bioelectron ; 232: 115314, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086565

RESUMO

Liquid crystal (LC)-based biosensors rely on the response of the LC molecules to perturbation generated by analytes at the interface, leading to the susceptible change in molecular alignment or orientation. The sensitivity of these biosensors is primarily dependent on the LC's material properties and surface anchoring strength. By incorporation of an unconventional mesogenic compound (CB7CB) coupled with the hybrid-alignment cell configuration, this work presents a binary nematic LC for label-free biosensing, manifesting a novel sensing technology that takes advantage of CB7CB-induced flexoelectricity in the transducer. Herein, we prepared LC mixtures by blending a typical rod-like nematic LC (E7) with the bent-core mesogen CB7CB in various weight ratios and studied the effect of the CB7CB content on E7/CB7CB-based biosensing performance in vertically aligned and hybrid-aligned nematic (HAN) cells. Owing to the anomalously small bend elastic constant K33 in CB7CB, the mixture designated CB45 with the highest CB7CB weight percentage (45 wt% in this study) was best applicable to biosensing in HAN cells. When observed under a polarizing optical microscope, CB45 in the HAN geometry showed the capability of detection of as low as 10-10 g/mL for the protein standard bovine serum albumin (BSA). Moreover, the quantitation of the assay was fulfilled by both dielectric and light transmission measurements of the hybrid-aligned cholesteric CB45/R5011. The limit of detection of 7 × 10-10 g/mL was achieved by spectrometric analysis. To the best of our knowledge, this work is the first to demonstrate flexoelectric biosensing on the basis of flexoelectric polarization associated with giant flexoelectricity in CB7CB partially constituting the LC transducer.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Cristais Líquidos/química , Soroalbumina Bovina/química
3.
Biosens Bioelectron ; 223: 115011, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549110

RESUMO

Conventional liquid crystal (LC)-based biosensors utilize predominantly thermotropic LCs as the signal-transducing media, which are less environmentally sustainable compared with lyotropic counterparts. In this study, the nematic phase of the anionic azo dye sunset yellow (SSY), a type of lyotropic chromonic liquid crystals (LCLCs), was employed in the optical and electrical biosensing of bovine serum albumin (BSA) and the cancer biomarker CA125. The optical response observed under a polarizing optical microscope was quantified by image analysis, taking advantage of the specific absorption of SSY. The electrical response derived from the dielectric spectra of SSY provided a new alternative for quantitative bioassay based on nematic LCLCs. The limit of detection (LOD) of the optical and electrical protein assay was ∼10-11- and ∼10-10-g/ml BSA, respectively, whereas that of the optical and electrical immunoassay was 5.97 × 10-11 and 6.02 × 10-12 g/ml for CA125, respectively. Moreover, real-time monitoring and kinetic analysis, which are hardly achievable for the hydrophobic thermotropic LCs, were demonstrated by dispersing CA125 in nematic SSY and subsequently recording the optical response over time during the specific binding between CA125 and the immobilized anti-CA125 antibody. Results from this study further the potential of nematic LCLCs in biosensing, especially in dielectric and real-time detection.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Cristais Líquidos/química , Cinética , Técnicas Biossensoriais/métodos , Imunoensaio , Microscopia , Soroalbumina Bovina/química
4.
Biomolecules ; 12(10)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291565

RESUMO

Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Humanos , RNA Circular , Autofagia/fisiologia , Osteoartrite/patologia , Apoptose/fisiologia , MicroRNAs/metabolismo , Biomarcadores/metabolismo
5.
Biosens Bioelectron ; 216: 114607, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969962

RESUMO

Circulating tumor cells (CTCs), which are shed from a primary site into the bloodstream and lead to distal metastases, are pivotal as a prognostic marker for evaluating the treatment response of cancer patients. One of the major challenges of detecting CTCs is their scarcity in blood. We report herein a label-free liquid crystal (LC) cytosensor by adopting an aptamer against epithelial cell adhesion molecule (EpCAM) to capture EpCAM-positive cancer cells. The optical and dielectric signals transduced from the interaction between LC and different numbers of captured breast cancer cells were investigated. A limit of detection (LOD) of 5 CTCs was resulted from the optical biosensing approach relying on texture observation and image analysis of the optical signal in polarizing micrographs. The LOD was further lowered to a single CTC in the dielectric approach by studying the real- and imaginary-part dielectric constants of LC at 1 kHz and 30 Hz as well as the relaxation frequency. The LC-based EpCAM-specific dielectric cytosensor was successfully applied to single-cell CTC detection in cancer cell-spiked human serum and whole blood. This platform demonstrates the potential of LC-based biosensing technologies in cellular-level detection and quantitation, which is crucial to the early diagnosis of cancer metastasis and progression.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Células Neoplásicas Circulantes , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Separação Celular/métodos , Molécula de Adesão da Célula Epitelial , Humanos , Células Neoplásicas Circulantes/patologia
6.
Biomedicines ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884782

RESUMO

Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)-Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.

7.
Biosensors (Basel) ; 12(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448252

RESUMO

Clinical diagnosis and disease monitoring often require the detection of small-molecule analytes and disease-related proteins in body fluids [...].


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Custos e Análise de Custo , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Proteínas
8.
Biosensors (Basel) ; 12(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448279

RESUMO

The working principle for a liquid crystal (LC)-based biosensor relies on the disturbance in the orderly aligned LC molecules induced by analytes at the LC-aqueous or LC-solid interface to produce optical signals that can be typically observed under a polarizing optical microscope (POM). Our previous studies demonstrate that such optical response can be enhanced by imposing a weak electric field on LCs so that they are readily tilted from the homeotropic alignment in response to lower concentrations of analytes at the LC-glass interface. In this study, an alternative approach toward signal amplification is proposed by taking advantage of the marginally tilted alignment configuration without applying an electric field. The surface of glass substrates was modified with a binary aligning agent of poly(vinyl alcohol) (PVA) and dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP), in which the amount of PVA was fine-tuned so that the interfacing LC molecules were slightly tilted but remained virtually homeotropically aligned to yield no light leakage under the POM in the absence of an analyte. Two nematic LCs, E7 and 5CB, were each sandwiched between two parallel glass substrates coated with the PVA/DMOAP composite for the detection of bovine serum albumin (BSA), a model protein, and cortisol, a small-molecule steroid hormone. Through image analysis of the optical appearance of E7 observed under the POM, a limit of detection (LOD) of 2.5 × 10-8 µg/mL for BSA and that of 3 × 10-6 µg/mL for cortisol were deduced. Both values are significantly lower than that obtained with only DMOAP as the alignment layers, which correspond to signal amplification of more than six orders of magnitude. The new approach for signal amplification reported in this work enables analytes of a wide range of molecular weights to be detected with high sensitivity.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Técnicas Biossensoriais/métodos , Hidrocortisona , Limite de Detecção , Cristais Líquidos/química , Soroalbumina Bovina
9.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771286

RESUMO

Our research was designed to evaluate the effect on bone regeneration with 3-dimensional (3D) printed polylactic acid (PLA) and 3D printed polycaprolactone (PCL) scaffolds, determine the more effective option for enhancing bone regeneration, and offer tentative evidence for further research and clinical application. Employing the 3D printing technique, the PLA and PCL scaffolds showed similar morphologies, as confirmed via scanning electron microscopy (SEM). Mechanical strength was significantly higher in the PLA group (63.4 MPa) than in the PCL group (29.1 MPa) (p < 0.01). Average porosity, swelling ratio, and degeneration rate in the PCL scaffold were higher than those in the PLA scaffold. SEM observation after cell coculture showed improved cell attachment and activity in the PCL scaffolds. A functional study revealed the best outcome in the 3D printed PCL-TGF-ß1 scaffold compared with the 3D printed PCL and the 3D printed PCL-Polydopamine (PDA) scaffold (p < 0.001). As confirmed via SEM, the 3D printed PCL- transforming growth factor beta 1 (TGF-ß1) scaffold also exhibited improved cell adhesion after 6 h of cell coculture. The 3D printed PCL scaffold showed better physical properties and biocompatibility than the 3D printed PLA scaffold. Based on the data of TGF-ß1, this study confirms that the 3D printed PCL scaffold may offer stronger osteogenesis.

10.
Biosensors (Basel) ; 11(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34677330

RESUMO

A liquid crystal (LC)-based single-substrate biosensor was developed by spin-coating an LC thin film on a dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-decorated glass slide. Compared with the conventional sandwiched cell configuration, the simplified procedure for the preparation of an LC film allows the film thickness to be precisely controlled by adjusting the spin rate, thus eliminating personal errors involved in LC cell assembly. The limit of detection (LOD) for bovine serum albumin (BSA) was lowered from 10-5 g/mL with a 4.2-µm-thick sandwiched cell of the commercial LC E7 to 10-7 g/mL with a 4.2-µm-thick spin-coated E7 film and further to 10-8 g/mL by reducing the E7 film thickness to 3.4 µm. Moreover, by exploiting the LC film of the highly birefringent nematic LC HDN in the immunodetection of the cancer biomarker CA125, an LOD comparable to that determined with a sandwiched HDN cell was achieved at 10-8 g/mL CA125 using a capture antibody concentration an order of magnitude lower than that in the LC cell. Our results suggest that employing spin-coated LC film instead of conventional sandwiched LC cell provides a more reliable, reproducible, and cost-effective single-substrate platform, allowing simple fabrication of an LC-based biosensor for sensitive and label-free protein detection and immunoassay.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Biomarcadores Tumorais , Imunoensaio , Soroalbumina Bovina
11.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361085

RESUMO

A novel aptamer-based competitive drug screening platform for osteoporosis was devised in which fluorescence-labeled, sclerostin-specific aptamers compete with compounds from selected chemical libraries for the binding of immobilized recombinant human sclerostin to achieve high-throughput screening for potential small-molecule sclerostin inhibitors and to facilitate drug repurposing and drug discovery. Of the 96 selected inhibitors and FDA-approved drugs, six were shown to result in a significant decrease in the fluorescence intensity of the aptamer, suggesting a higher affinity toward sclerostin compared with that of the aptamer. The targets of these potential sclerostin inhibitors were correlated to lipid or bone metabolism, and several of the compounds have already been shown to be potential osteogenic activators, indicating that the aptamer-based competitive drug screening assay offered a potentially reliable strategy for the discovery of target-specific new drugs. The six potential sclerostin inhibitors suppressed the level of both intracellular and/or extracellular sclerostin in mouse osteocyte IDG-SW3 and increased alkaline phosphatase activity in IDG-SW3 cells, human bone marrow-derived mesenchymal stem cells and human fetal osteoblasts hFOB1.19. Potential small-molecule drug candidates obtained in this study are expected to provide new therapeutics for osteoporosis as well as insights into the structure-activity relationship of sclerostin inhibitors for rational drug design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Aptâmeros de Nucleotídeos/isolamento & purificação , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia
12.
Biosensors (Basel) ; 11(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436073

RESUMO

Compared with thermotropic liquid crystals (LCs), the biosensing potential of lyotropic chromonic liquid crystals (LCLCs), which are more biocompatible because of their hydrophilic nature, has scarcely been investigated. In this study, the nematic phase, a mesophase shared by both thermotropic LCs and LCLCs, of disodium cromoglycate (DSCG) was employed as the sensing mesogen in the LCLC-based biosensor. The biosensing platform was constructed so that the LCLC was homogeneously aligned by the planar anchoring strength of polyimide, but was disrupted in the presence of proteins such as bovine serum albumin (BSA) or the cancer biomarker CA125 captured by the anti-CA125 antibody, with the level of disturbance (and the optical signal thus produced) predominated by the amount of the analyte. The concentration- and wavelength-dependent optical response was analyzed by transmission spectrometry in the visible light spectrum with parallel or crossed polarizers. The concentration of CA125 can be quantified with spectrometrically derived parameters in a linear calibration curve. The limit of detection for both BSA and CA125 of the LCLC-based biosensor was superior or comparable to that of thermotropic LC-based biosensing techniques. Our results provide, to the best of our knowledge, the first evidence that LCLCs can be applied in spectrometrically quantitative biosensing.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais , Cristais Líquidos , Humanos , Mucinas , Neoplasias , Soroalbumina Bovina , Análise Espectral
13.
Hum Mol Genet ; 30(19): 1833-1850, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34089062

RESUMO

Mutations of SPINT2, the gene encoding the integral membrane, Kunitz-type serine inhibitor HAI-2, primarily affect the intestine, while sparing many other HAI-2-expressing tissues, causing sodium loss in patients with syndromic congenital sodium diarrhea. The membrane-bound serine protease prostasin was previously identified as a HAI-2 target protease in intestinal tissues but not in the skin. In both tissues, the highly related inhibitor HAI-1 is, however, the default inhibitor for prostasin and the type 2 transmembrane serine protease matriptase. This cell-type selective functional linkage may contribute to the organ-selective damage associated with SPINT 2 mutations. To this end, the impact of HAI-2 deletion on matriptase and prostasin proteolysis was, here, compared using Caco-2 human colorectal adenocarcinoma cells and HaCaT human keratinocytes. Greatly enhanced prostasin proteolytic activity with a prolonged half-life and significant depletion of HAI-1 monomer were observed with HAI-2 loss in Caco-2 cells but not HaCaT cells. The constitutive, high level prostasin zymogen activation observed in Caco-2 cells, but not in HaCaT cells, also contributes to the excessive prostasin proteolytic activity caused by HAI-2 loss. HAI-2 deletion also caused increased matriptase zymogen activation, likely as an indirect result of increased prostasin proteolysis. This increase in activated matriptase, however, only had a negligible role in depletion of HAI-1 monomer. Our study suggests that the constitutive, high level of prostasin zymogen activation and the cell-type selective functional relationship between HAI-2 and prostasin renders Caco-2 cells more susceptible than HaCaT cells to the loss of HAI-2, causing a severe imbalance favoring prostasin proteolysis.


Assuntos
Células Epiteliais , Glicoproteínas de Membrana , Células CACO-2 , Células Epiteliais/metabolismo , Humanos , Intestinos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteólise , Serina Endopeptidases
14.
Biosensors (Basel) ; 11(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805735

RESUMO

An optical and dielectric biosensor based on a liquid crystal (LC)-photopolymer composite was established in this study for the detection and quantitation of bovine serum albumin (BSA). When the nematic LC E7 was doped with 4-wt.% NOA65, a photo-curable prepolymer, and photopolymerized by UV irradiation at 20 mW/cm2 for 300 s, the limit of detection determined by image analysis of the LC optical texture and dielectric spectroscopic measurements was 3400 and 88 pg/mL for BSA, respectively, which were lower than those detected with E7 alone (10 µg/mL BSA). The photopolymerized NOA65, but not the prepolymer prior to UV exposure, contributed to the enhanced optical signal, and UV irradiation of pristine E7 in the absence of NOA65 had no effect on the optical texture. The effective tilt angle θ, calculated from the real-part dielectric constant ε', decreased with increasing BSA concentration, providing strong evidence for the correlation of photopolymerized NOA65 to the intensified disruption in the vertically oriented LC molecules to enhance the optical and dielectric signals of BSA. The optical and dielectric anisotropy of LCs and the photo-curable dopant facilitate novel quantitative and signal amplification approaches to potential development of LC-based biosensors.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos/química , Soroalbumina Bovina/análise , Anisotropia , Espectroscopia Dielétrica , Água
15.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672524

RESUMO

Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult-they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.


Assuntos
Antioxidantes/farmacologia , Cálcio/farmacologia , Senescência Celular , Meios de Cultura/química , Células-Tronco Mesenquimais/citologia , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Forma Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
16.
Biomed Opt Express ; 11(9): 4915-4927, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014590

RESUMO

Conventional liquid crystal (LC)-based biosensing at the LC-glass interface requires the assembly of an LC cell formed by two glass substrates with an LC film sandwiched in between. As most biochemical and clinical assays are performed on a single solid substrate, the feasibility of a single-substrate biodetection platform based on a thin film of LC-photopolymer composite was explored in this study. The LC mixture, consisting of nematic LC, E7 or AY40-006, doped with a small amount (≤ 5 wt%) of a photocurable prepolymer was spin-coated on a glass substrate modified with dimethyloctadecyl[3-trimethoxysilyl)propyl] ammonium chloride (DMOAP), a vertical alignment reagent, followed by irradiation with ultraviolet (UV) light. During the photopolymerization process, the accumulated and polymerized NOA65 at the LC-glass interface weakened the anchoring strength of DMOAP, resulting in a decrease in the pretilt angle of LC and allowing the LC molecules to be more easily disturbed in the presence of biomolecules, compared with vertically aligned LC in the absence of polymerized NOA65. Incorporating NOA65 in the LC film therefore provides a means for signal amplification. When an LC-photopolymer composite film consisting of AY40-006 and 4-wt% NOA65 was exposed to UV at 15 mW/cm2 for 30 s and utilized as the biosensing mesogen, the limits of detection were 1.6 × 10-12 g/ml for the direct detection of bovine serum albumin (BSA) and 2.1 × 10-8 g/ml for the immunoassay of the cancer biomarker CA125, significantly lower than those detected with AY40-006 alone or AY40-006/NOA65 mixture without UV irradiation. The results from this study offer a compelling implication on the biomedical application of LC-photopolymer composites in label-free and single-substrate biodetection.

17.
Hum Cell ; 33(4): 1068-1080, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32779152

RESUMO

The pathophysiological functions of matriptase, a type 2 transmembrane serine protease, rely primarily on its enzymatic activity, which is under tight control through multiple mechanisms. Among those regulatory mechanisms, the control of zymogen activation is arguably the most important. Matriptase zymogen activation not only generates the mature active enzyme but also initiates suppressive mechanisms, such as rapid inhibition by HAI-1, and matriptase shedding. These tightly coupled events allow the potent matriptase tryptic activity to fulfill its biological functions at the same time as limiting undesired hazards. Matriptase is converted to the active enzyme via a process of autoactivation, in which the activational cleavage is thought to rely on the interactions of matriptase zymogen molecules and other as yet identified proteins. Matriptase autoactivation can occur spontaneously and is rapidly followed by the formation and then shedding of matriptase-HAI-1 complexes, resulting in the presence of relatively low levels of the complex on cells. Activation can also be induced by several non-protease factors, such as the exposure of cells to a mildly acidic buffer, which rapidly causes high-level matriptase zymogen activation in almost all cell lines tested. In the current study, the structural requirements for this acid-induced zymogen activation are compared with those required for spontaneous activation through a systematic analysis of the impact of 18 different mutations in various structural domains and motifs on matriptase zymogen activation. Our study reveals that both acid-induced matriptase activation and spontaneous activation depend on the maintenance of the structural integrity of the serine protease domain, non-catalytic domains, and posttranslational modifications. The common requirements of both modes of activation suggest that acid-induced matriptase activation may function as a physiological mechanism to induce pericellular proteolysis by accelerating matriptase autoactivation.


Assuntos
Ácidos/farmacologia , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Serina Endopeptidases/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Humanos , Mutação , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Serina Endopeptidases/química , Serina Endopeptidases/genética , Células Tumorais Cultivadas
18.
Biomed Opt Express ; 10(10): 4987-4998, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646024

RESUMO

The fundamental principle of liquid-crystal (LC)-based biosensing is the sensitive response of LC orientation to external stimuli. Biomolecules such as proteins or DNAs immobilized on the glass substrate of a LC cell are detected through disrupting the LC alignment and, in turn, altering the birefringence, resulting in changes in the optical texture that can be readily observed under a polarizing optical microscope. With an additional weak electric field across a sandwiched LC cell, we demonstrate in this study a novel label-free biodetection technique with amplified signal and improved detection limit. By applying the binarization analysis as the quantitative approach, the increase in the light leakage area in the optical texture of LCs with increasing amount of biomolecules can be quantitated with a bright-area-ratio (BAR)-versus-concentration curve. The reported biosensing technique exploits both the optical and electrical properties of LCs and is potentially applicable to other LC-based rapid screening and bioassays.

19.
Phytomedicine ; 55: 165-171, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668426

RESUMO

BACKGROUND: Previously, we found that (-)-epigallocatechin-3-gallate (EGCG) enhanced osteogenic differentiation of murine bone marrow mesenchymal stem cells by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and eventually mineralization. We further found EGCG supplementation preserved bone mass and microarchitecture in female rats during estrogen deficiency in the proximal tibia and lumbar spine at least in part by increasing bone morphogenetic protein-2 (BMP2). BMP2 can enhance de novo bone formation. PURPOSE: In this study, we evaluate the effect of local EGCG application in de novo bone formation in bone defect healing. METHODS: Twenty-four rats aged 4 months were weight-matched and randomly allocated to 2 groups: defect control with vehicle treatment (control) and defect with 10 µM EGCG treatment (EGCG). Daily vehicle and EGCG were applied locally by percutaneous local injection 2 days after defect creation for 2 weeks. Four weeks after treatment, animals were sacrificed for micro-computed tomography (µ-CT) and biomechanical analysis. RESULTS: Local EGCG at femoral defect can enhance de novo bone formation by increasing bone volume and subsequently improve mechanical properties including max load, break point, stiffness, area under the max load curve, area under the break point curve and ultimate stress. CONCLUSIONS: Local EGCG may enhance bone defect healing via at least partly by the de novo bone formation of BMP-2.


Assuntos
Catequina/análogos & derivados , Fêmur/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Conservadores da Densidade Óssea/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Catequina/farmacologia , Fêmur/diagnóstico por imagem , Fêmur/lesões , Masculino , Ratos Sprague-Dawley , Microtomografia por Raio-X
20.
Molecules ; 23(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563251

RESUMO

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (-)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA