Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurogastroenterol Motil ; 30(2): 194-207, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38576369

RESUMO

Background/Aims: This study aims to investigate the effect of a fermented rice drink with Lactiplantibacillus plantarum JSA22 on symptoms, blood tests, microbiomes, and fecal metabolites in patients with irritable bowel syndrome (IBS) who were overweight. Methods: Sixty overweight (body mass index ≥ 23 kg/m2) patients aged between 20 and 65 with IBS were enrolled. Patients were divided into 2 groups and administered either a fermented rice drink or an nonfermented rice drink for a month. The symptom questionnaire, blood samples, and stool samples for microbiome and metabolite were collected before and after the month of rice drink administration. The primary efficacy variable was the subject's global assessment of IBS symptoms. Results: In both groups, global IBS symptoms, including abdominal pain, bowel habit, urgency, and abdominal distension, improved significantly (P < 0.01). The abdominal bloating was more significantly improved in the fermented rice drink group than in the nonfermented rice drink group (P < 0.05). Significant changes were not observed in metabolic syndrome-related blood tests or fecal metabolites in either group. However, microbiome analysis showed significant differences in genus levels before and after consuming fermented rice drink, such as in Blautia in stool (P = 0.020) and Prevotella (P = 0.017) and Oribacterium (P = 0.018) in saliva. Conclusions: The fermented rice drink with L. plantarum JSA22 showed a beneficial effect in reducing abdominal distension in IBS patients. Bacteria that reduce visceral fat accumulation increased in the stool and saliva of patients who consumed fermented rice drinks.

2.
J Pers Med ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38541022

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone known for its pivotal role in enhancing insulin secretion and reducing glucagon release from the pancreas. Diabetic nephropathy, which is characterized by albuminuria, represents a significant microvascular complication of diabetes. Most of the previous studies mainly focused on the therapeutic renal protective effect in clinical trials after the administration of GLP-1 receptor agonists (GLP-1 RAs), rather than before administration. Hence, this study aimed to investigate the association between fasting plasma GLP-1 levels and albuminuria before GLP-1 RA administration. A cross-sectional study was designed to evaluate the association between fasting plasma GLP-1 levels and albuminuria in patients with type 2 diabetes mellitus (T2DM). A cohort of 68 participants with T2DM was analyzed using data collected at Wonkwang University Hospital in Iksan, Korea. Logistic regression analysis was employed to determine the odds ratio (OR) and 95% confidence interval (CI) of the incidence of albuminuria between two groups categorized by fasting GLP-1 levels, low (Group L) and high GLP-1 (Group H). The OR (95% CI) for the incidence of albuminuria comparing Group L with Group H of fasting plasma GLP-1 levels was 3.41 (1.16-10.02), p = 0.03 after adjustment for relevant variables including age, gender, fasting plasma glucose, HbA1c, C-peptide, creatinine, and medication use [angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), sodium-glucose cotransporter-2 (SGLT-2) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors]. When analyzed as a continuous variable, each 1 pmol/L reduction in fasting plasma GLP-1 levels was associated with an OR (95% CI) of 1.67 (1.17-1.87), p = 0.02, following full adjustment. These results highlight a negative association between fasting plasma GLP-1 levels and the incidence of albuminuria in Korean patients with T2DM, before GLP-1 RA administration. These findings suggest that endogenous GLP-1 may have a beneficial impact in mitigating albuminuria.

4.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563399

RESUMO

Metalloendopeptidase ADAM-Like Decysin 1 (ADAMDEC1) is an anti-inflammatory peptidase that is almost exclusively expressed in the gastrointestinal (GI) tract. We have recently found abundant and selective expression of Adamdec1 in colonic mucosal PDGFRα+ cells. However, the cellular origin for this gene expression is controversial as it is also known to be expressed in intestinal macrophages. We found that Adamdec1 mRNAs were selectively expressed in colonic mucosal subepithelial PDGFRα+ cells. ADAMDEC1 protein was mainly released from PDGFRα+ cells and accumulated in the mucosal layer lamina propria space near the epithelial basement membrane. PDGFRα+ cells significantly overexpressed Adamdec1 mRNAs and protein in DSS-induced colitis mice. Adamdec1 was predominantly expressed in CD45- PDGFRα+ cells in DSS-induced colitis mice, with only minimal expression in CD45+ CD64+ macrophages. Additionally, overexpression of both ADAMDEC1 mRNA and protein was consistently observed in PDGFRα+ cells, but not in CD64+ macrophages found in human colonic mucosal tissue affected by Crohn's disease. In summary, PDGFRα+ cells selectively express ADAMDEC1, which is localized to the colon mucosa layer. ADAMDEC1 expression significantly increases in DSS-induced colitis affected mice and Crohn's disease affected human tissue, suggesting that this gene can serve as a diagnostic and/or therapeutic target for intestinal inflammation and Crohn's disease.


Assuntos
Proteínas ADAM , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Biomarcadores , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/citologia , Colo/metabolismo , Doença de Crohn/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
5.
PLoS One ; 17(5): e0261743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35560163

RESUMO

Subepithelial platelet-derived growth factor receptor alpha (PDGFRα)+ cells found in the colonic mucosal tissue come in close contact with epithelial cells, immune cells, neurons, capillaries, and lymphatic networks. Mucosal subepithelial PDGFRα+ cells (MuPαC) are important regulators in various intestinal diseases including fibrosis and inflammation. However, the transcriptome of MuPαC has not yet been elucidated. Using Pdgfra-eGFP mice and flow cytometry, we isolated colonic MuPαC and obtained their transcriptome data. In analyzing the transcriptome, we identified three novel, and selectively expressed, markers (Adamdec1, Fin1, and Col6a4) found in MuPαC. In addition, we identified a unique set of MuPαC-enriched genetic signatures including groups of growth factors, transcription factors, gap junction proteins, extracellular proteins, receptors, cytokines, protein kinases, phosphatases, and peptidases. These selective groups of genetic signatures are linked to the unique cellular identity and function of MuPαC. Furthermore, we have added this MuPαC transcriptome data to our Smooth Muscle Genome Browser that contains the transcriptome data of jejunal and colonic smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and smooth muscle resident PDGFRα+ cells: (https://med.unr.edu/physio/transcriptome). This online resource provides a comprehensive reference of all currently known genetic transcripts expressed in primary MuPαC in the colon along with smooth muscle resident PDGFRα cells, SMC, and ICC in the murine colon and jejunum.


Assuntos
Células Intersticiais de Cajal , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Animais , Biomarcadores/metabolismo , Colo/metabolismo , Perfilação da Expressão Gênica , Células Intersticiais de Cajal/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502094

RESUMO

The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas da Matriz Extracelular/genética , Humanos
7.
Korean J Gastroenterol ; 77(3): 104-114, 2021 03 25.
Artigo em Coreano | MEDLINE | ID: mdl-33758108

RESUMO

Men and women are different, but this difference has not been well reflected in clinical trials and preclinical studies of biomedical science. Gender medicine, which systematically analyzes research results according to sex and gender, has been emphasized to overcome this problem. On the other hand, researchers still have difficulty in applying gender medicine to their research. To perform rigorous gender medicine, using correct terms, a thorough literature review during research planning, appropriate statistical analysis and reporting, and cautious interpretation of the results are necessary. Applying gender medicine will increase the reproducibility of studies, promote discoveries, expand the study relevance, and ultimately improve patient care in both men and women. Here, this study reviewed the practical issues on applying gender medicine to both preclinical and clinical studies in the field of biomedical science.


Assuntos
Pesquisa Biomédica , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Fatores Sexuais
8.
Gastroenterology ; 160(5): 1662-1678.e18, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421511

RESUMO

BACKGROUND & AIMS: Interstitial cells of Cajal (ICCs) and pancreatic ß cells require receptor tyrosine kinase (KIT) to develop and function properly. Degeneration of ICCs is linked to diabetic gastroparesis. The mechanisms linking diabetes and gastroparesis are unclear, but may involve microRNA (miRNA)-mediated post-transcriptional gene silencing in KIT+ cells. METHODS: We performed miRNA-sequencing analysis from isolated ICCs in diabetic mice and plasma from patients with idiopathic and diabetic gastroparesis. miR-10b-5p target genes were identified and validated in mouse and human cell lines. For loss-of-function studies, we used KIT+ cell-restricted mir-10b knockout mice and KIT+ cell depletion mice. For gain-of-function studies, a synthetic miR-10b-5p mimic was injected in multiple diabetic mouse models. We compared the efficacy of miR-10b-5p mimic treatment vs antidiabetic and prokinetic medicines. RESULTS: miR-10b-5p is highly expressed in ICCs from healthy mice, but drastically depleted in ICCs from diabetic mice. A conditional knockout of mir-10b in KIT+ cells or depletion of KIT+ cells in mice leads to degeneration of ß cells and ICCs, resulting in diabetes and gastroparesis. miR-10b-5p targets the transcription factor Krüppel-like factor 11 (KLF11), which negatively regulates KIT expression. The miR-10b-5p mimic or Klf11 small interfering RNAs injected into mir-10b knockout mice, diet-induced diabetic mice, and TALLYHO polygenic diabetic mice rescue the diabetes and gastroparesis phenotype for an extended period of time. Furthermore, the miR-10b-5p mimic is more effective in improving glucose homoeostasis and gastrointestinal motility compared with common antidiabetic and prokinetic medications. CONCLUSIONS: miR-10b-5p is a key regulator in diabetes and gastrointestinal dysmotility via the KLF11-KIT pathway. Restoration of miR-10b-5p may provide therapeutic benefits for these disorders.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/prevenção & controle , Esvaziamento Gástrico , Trânsito Gastrointestinal , Gastroparesia/prevenção & controle , Células Secretoras de Insulina/metabolismo , Células Intersticiais de Cajal/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Feminino , Gastroparesia/genética , Gastroparesia/metabolismo , Gastroparesia/fisiopatologia , Células HEK293 , Humanos , Células Secretoras de Insulina/patologia , Células Intersticiais de Cajal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto Jovem
9.
Chonnam Med J ; 56(3): 180-185, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33014756

RESUMO

Cilostazol, a phosphodiesterase III inhibitor, has antiplatelet and vasodilatory effects. It also has pleiotrophic effects including reduction of oxygen free radicals, positive chronotropic effect and inhibition of intracellular Ca2+ associated catecholamine secretion. The study was aimed to examine, in vivo, the effects of cilostazol treatments on myocardial function, myocardial remodeling, and neurohormonal status in myocardial infarction (MI) with restrained stress rat model. Male Sprague Dawley rats, subjected to coronary artery ligation to induce myocardial infarction (MI), received either a standard rat chow alone (control, n=5) or combined with cilostazol (cilostazol, n=5; 5 mg/kg×5 weeks). They were exposed to repeated restraint stress (2 h×2 times/day) for 10 days beginning 1 week after surgery. Left ventricular ejection fraction (LVEF), LV mass by heart weight/body weight ratio and level of tissue brain natriuretic peptide (BNP) expression by immunoblotting were determined. Plasma epinephrine and norepinephrine levels were also measured. Mean LVEF was higher in the cilostazol group than in the control group (66.9±14.3 vs 47.0±17.1, p<0.05) at 5 weeks after MI. However, LV mass and tissue BNP expression were significantly lower in the cilostazol than in the control group (p<0.05). Plasma epinephrine and norepinephrine levels were also lower in the cilostazol group compared with the control (p<0.05). Cilostazol preserves left ventricular systolic function and attenuates stress induced remodeling in postinfarct rats. Its beneficial effects were associated with reduced plasma catecholamine levels during postinfarct remodeling.

10.
Cancers (Basel) ; 12(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899998

RESUMO

Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-ß (TGFß) signaling. Platelet-derived growth factor receptor ß (PDGFRß), which is a receptor tyrosine kinase and is also a downstream signal of TGFß, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRß and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFß treatment in the colon cancer cell line DLD-1. TGFß and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRß blockade. We propose that the PDGFRß signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRß signaling due to increased TGFß and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.

11.
Transl Oncol ; 13(12): 100861, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32891902

RESUMO

Neurotransmitters are reported to be involved in tumor initiation and progression. This study aimed to elucidate the prognostic value of γ-aminobutyric acid type A receptor δ subunit (GABRD) in colon adenocarcinoma (COAD) using the data from The Cancer Genome Atlas (TCGA) database. The GABRD mRNA expression levels in the COAD and normal tissues were compared using the Wilcoxon rank-sum test. The correlation between clinicopathologic characteristics and GABRD expression was analyzed by Wilcoxon rank-sum test or Kruskal-Wallis test and logistic regression. The prognostic value of GABRD mRNA expression in patients with COAD was determined using the Kaplan-Meier curve and Cox regression analysis. Finally, the molecular mechanisms of GABRD in COAD were predicted by gene set enrichment analysis (GSEA). The COAD tissues exhibited higher GABRD mRNA expression levels than the normal tissues. The logistic regression analysis revealed that GABRD mRNA expression was correlated with TNM stage, N stage, M stage, and microsatellite instability (MSI) status. The Kaplan-Meier survival curve and log-rank test revealed that patients with COAD exhibiting high GABRD mRNA expression were associated with poor overall survival (OS). The multivariate analysis indicated that increased GABRD mRNA expression was an independent prognostic factor and was correlated with a poor OS. The GSEA revealed that GABRD was involved in signaling pathways, including cell adhesion molecules, gap junction, melanogenesis, and mTOR signaling pathway, as well as the signaling pathways associated with basal cell carcinoma or bladder cancer development. In summary, enhanced GABRD mRNA expression may be a potential independent prognostic biomarker for COAD.

12.
Pathol Res Pract ; 216(1): 152791, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31866097

RESUMO

BACKGROUND: Microsatellite stable (MSS) BRAF p.V600E mutation colorectal cancer (BRAF-CRC) has a poor prognosis, whereas microsatellite instability (MSI) in BRAF-CRC is associated with a favorable prognosis. Although usually considered a single clinical entity, the MSI BRAF-CRC subtype shows some distinct characteristics in comparison with the MSS BRAF-CRC subtype. METHODS: We conducted a meta-analysis to investigate the influence of clinicopathological features on MSI status in BRAF-CRC. We searched publications up to March 2019 from PubMed, Embase, and the Cochrane Library. The effect of MSI status on outcome parameters was assessed using odds ratios (ORs) with 95% confidence intervals (CIs) and fixed- or random-effects models according to the heterogeneity. RESULTS: After reviewing 2839 reports, 16 eligible studies including 1381 patients with BRAF-CRC met the criteria. The MSI BRAF-CRC subtype was associated with older age, female sex (OR = 1.70; 95% CI = 1.35-2.14; P < 0.00001), proximal tumor location (OR = 5.10; 95% CI = 3.70-7.03; P < 0.00001), early TNM stage (OR = 5.28; 95% CI = 3.93-7.09; P < 0.00001), and poor differentiation (OR = 2.29; 95% CI = 1.60-3.28; P < 0.00001). CONCLUSIONS: MSI was significantly correlated with distinct favorable clinicopathological characteristics in BRAF-CRC. These results suggest that MSI status should be considered as a stratification factor for better management of the BRAF-CRC.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Adulto , Idoso , Criança , Neoplasias do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
13.
Neural Regen Res ; 13(2): 340-346, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29557386

RESUMO

Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.

14.
J Vis Exp ; (133)2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29553517

RESUMO

Intestinal obstructions, that impede or block peristaltic movement, can be caused by abdominal adhesions and most gastrointestinal (GI) diseases including tumorous growths. However, the cellular remodeling mechanisms involved in, and caused by, intestinal obstructions are poorly understood. Several animal models of intestinal obstructions have been developed, but the mouse model is the most cost/time effective. The mouse model uses the surgical implantation of an intestinal partial obstruction (PO) that has a high mortality rate if it is not performed correctly. In addition, mice receiving PO surgery fail to develop hypertrophy if an appropriate blockade is not used or not properly placed. Here, we describe a detailed protocol for PO surgery which produces reliable and reproducible intestinal obstructions with a very low mortality rate. This protocol utilizes a surgically placed silicone ring that surrounds the ileum which partially blocks digestive movement in the small intestine. The partial blockage makes the intestine become dilated due to the halt of digestive movement. The dilation of the intestine induces smooth muscle hypertrophy on the oral side of the ring that progressively develops over 2 weeks until it causes death. The surgical PO mouse model offers an in vivo model of hypertrophic intestinal tissue useful for studying pathological changes of intestinal cells including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), PDGFRα+, and neuronal cells during the development of intestinal obstruction.


Assuntos
Obstrução Intestinal/diagnóstico , Animais , Modelos Animais de Doenças , Obstrução Intestinal/patologia , Camundongos
15.
PLoS One ; 12(11): e0186322, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182640

RESUMO

The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs), neuronal nitric oxide synthase (nNOS)-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years). The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP) 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF), nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005) and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, P<0.001), while endomysial area of circular muscle did not significantly decrease. The proportions of NOS-immunoreactive cells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; P<0.001 and P = 0.004, respectively), but there was no significant change of PGP 9.5-immunopositiviy. The expressions of nNOS, c-Kit and SCF mRNA also reduced with aging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively), while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively). The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved total enteric neurons, and contractility in aged rat esophagus may explain the aging-associated esophageal dysmotility.


Assuntos
Envelhecimento , Esôfago/citologia , Células Intersticiais de Cajal/citologia , Neurônios/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Western Blotting , Esôfago/metabolismo , Células Intersticiais de Cajal/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
16.
J Neurogastroenterol Motil ; 23(4): 592-605, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28774159

RESUMO

BACKGROUND/AIMS: Neuronal degeneration and changes in interstitial cells of Cajal (ICCs) are important mechanisms of age-related constipation. This study aims to compare the distribution of ICCs and neuronal nitric oxide synthase (nNOS) with regard to age-related changes between the ascending colon (AC) and descending colon (DC) in 6-, 31-, and 74-week old and 2-year old male Fischer-344 rats. METHODS: The amount of fecal pellet and the bead expulsion times were measured. Fat proportion in the muscle layer of the colon was analyzed by hematoxylin and eosin staining. Proto-oncogene receptor tyrosine kinase (KIT) and neuronal nitric oxide synthase (nNOS) expression were analyzed with Western blotting and immunohistochemistry. Isovolumetric contractile measurements and electrical field stimulation were used to assess smooth muscle contractility. RESULTS: Colon transit and bead expulsion slowed with senescence. Fat in the muscle layer accumulated with age in the AC, but not in the DC. The proportion of KIT-immunoreactive ICCs in the submucosal and myenteric plexus was higher in the DC than in the AC, and it declined with age, especially in the AC. In contrast, the proportion of NOS-immunoreactive neurons in the myenteric plexus was higher in the AC than in the DC, and both decreased in older rats. Nitric oxide levels declined with age in the DC. Muscle strip experiments showed that the inhibitory response mediated by nitric oxide in the circular direction of the DC was reduced in 2-year old rats. CONCLUSION: The AC and DC differ in their distribution of ICCs and nNOS, and age-related loss of nitrergic neurons more severely affects the DC than the AC.

17.
PLoS One ; 12(8): e0182265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806761

RESUMO

Platelet-derived growth factor receptor alpha (PDGFRα)+ cells are distributed into distinct morphological groups within the serosal, muscular, and submucosal layers as well as the myenteric and deep muscular plexi. PDGFRα+ cells directly interact with interstitial cells of Cajal (ICC) and smooth muscle cells (SMC) in gastrointestinal smooth muscle tissue. These three cell types, SMC, ICC, and PDGFRα+ cells (SIP cells), form an electrical syncytium, which dynamically regulates gastrointestinal motility. We have previously reported the transcriptomes of SMC and ICC. To complete the SIP cell transcriptome project, we obtained transcriptome data from jejunal and colonic PDGFRα+ cells. The PDGFRα+ cell transcriptome data were added to the Smooth Muscle Genome Browser that we previously built for the genome-scale gene expression data of ICC and SMC. This browser provides a comprehensive reference for all transcripts expressed in SIP cells. By analyzing the transcriptomes, we have identified a unique set of PDGFRα+ cell signature genes, growth factors, transcription factors, epigenetic enzymes/regulators, receptors, protein kinases/phosphatases, and ion channels/transporters. We demonstrated that the low voltage-dependent T-type Ca2+ channel Cacna1g gene was particularly expressed in PDGFRα+ cells in the intestinal serosal layer in mice. Expression of this gene was significantly induced in the hyperplasic PDGFRα+ cells of obstructed small intestine in mice. This gene was also over-expressed in colorectal cancer, Crohn's disease, and diverticulitis in human patients. Taken together, our data suggest that Cacna1g exclusively expressed in serosal PDGFRα+ cells is a new pathological marker for gastrointestinal diseases.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Perfilação da Expressão Gênica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Desdiferenciação Celular , Proliferação de Células/genética , Separação Celular , Regulação da Expressão Gênica , Genoma , Humanos , Hiperplasia , Hipertrofia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Jejuno/metabolismo , Camundongos , Músculo Liso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
PLoS One ; 12(4): e0176031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426719

RESUMO

Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.


Assuntos
Células Intersticiais de Cajal/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Colo/citologia , Colo/metabolismo , Citometria de Fluxo , Canais Iônicos/química , Canais Iônicos/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Camundongos , Homologia de Sequência de Aminoácidos
19.
PLoS One ; 12(2): e0171262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152551

RESUMO

Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Miotonina Proteína Quinase/fisiologia , Fator de Resposta Sérica/fisiologia , Animais , Western Blotting , Feminino , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/ultraestrutura , Reação em Cadeia da Polimerase , Proteômica , Tamoxifeno/farmacologia
20.
Low Urin Tract Symptoms ; 7(1): 56-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663653

RESUMO

OBJECTIVES: To investigate the effect of chronic stress on bladder function. We used awake cystometry and investigated the expressions of contractile-associated proteins. METHODS: Sixteen adult female Sprague-Dawley rats, weighing approximately 220 g, were randomly assigned and divided into control (CON, n = 8) and chronic variable stress (CVS, n = 7) groups. The rats of the CVS group spent 6 weeks under the CVS protocol. After 6 weeks, continuous filling cystometry was performed on conscious animals. The basal pressure, maximal pressure, micturition duration, threshold pressure, micturition interval and micturition volume were measured in each rat. After measuring cystometric parameters, the rat was sacrificed. Western blotting of the entire urinary bladder was performed for detecting the changes in contractile-associated protein expression. RESULTS: Compared to the control group, basal pressure and threshold pressure were significantly higher (P < 0.05) while micturition duration, micturition interval and micturition volume were significantly lower in the CVS group (P < 0.05). In the western blot study, neuronal nitric oxide synthase (nNOS) expression was weaker and RhoA/Rho-kinase alpha were stronger in the CVS group than those in the CON group. CONCLUSIONS: These results suggest that chronic variable stress induces changes in bladder function lead to bladder hyperactivity and possibly related to the changes in RhoA/Rho-kinase and nNOS.


Assuntos
Estresse Psicológico/complicações , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária/fisiopatologia , Animais , Biomarcadores/metabolismo , Western Blotting , Feminino , Óxido Nítrico Sintase Tipo I/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/diagnóstico , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Micção/fisiologia , Urodinâmica/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA