Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39179298

RESUMO

BACKGROUND AND PURPOSE: To evaluate the radiomics-based model performance for differentiation between glioblastoma (GB) and brain metastases (BM) using magnetization prepared rapid gradient echo (MPRAGE) and volumetric interpolated breath-hold examination (VIBE) T1-contrast enhanced sequences. MATERIALS AND METHODS: T1-CE MPRAGE and VIBE sequences acquired in 108 patients (31 GBs and 77 BM) during the same MRI session were retrospectively evaluated. Post standardized image pre-processing and segmentation, radiomics features were extracted from necrotic and enhancing tumor components. Pearson correlation analysis of radiomics features from tumor subcomponents was also performed. A total of 90 machine learning (ML) pipelines were evaluated using a five-fold cross validation. Performance was measured by mean AUC-ROC, Log-loss and Brier scores. RESULTS: A feature-wise comparison showed that the radiomic features between sequences were strongly correlated, with the highest correlation for shape-based features. The mean AUC across the top-ten pipelines ranged between 0.851-0.890 with T1-CE MPRAGE and between 0.869-0.907 with T1-CE VIBE sequence. Top performing models for the MPRAGE sequence commonly used support vector machines, while those for VIBE sequence used either support vector machines or random forest. Common feature reduction methods for top-performing models included linear combination filter and least absolute shrinkage and selection operator (LASSO) for both sequences. For the same ML-feature reduction pipeline, model performances were comparable (AUC-ROC difference range: [-0.078, 0.046]). CONCLUSIONS: Radiomic features derived from T1-CE MPRAGE and VIBE sequences are strongly correlated and may have similar overall classification performance for differentiating GB from BM. ABBREVIATIONS: BM: Brain metastases, GB: glioblastoma, T1-CE: T1 contrast enhanced sequence, MPRAGE: magnetization prepared rapid gradient echo, ML: machine learning, RF: random forest, VIBE: volumetric interpolated breath-hold examination.

2.
IEEE Trans Pattern Anal Mach Intell ; 38(12): 2345-2358, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27824580

RESUMO

We consider a problem of clustering a sequence of multinomial observations by way of a model selection criterion. We propose a form of a penalty term for the model selection procedure. Our approach subsumes both the conventional AIC and BIC criteria but also extends the conventional criteria in a way that it can be applicable also to a sequence of sparse multinomial observations, where even within a same cluster, the number of multinomial trials may be different for different observations. In addition, as a preliminary estimation step to maximum likelihood estimation, and more generally, to maximum Lq estimation, we propose to use reduced rank projection in combination with non-negative factorization. We motivate our approach by showing that our model selection criterion and preliminary estimation step yield consistent estimates under simplifying assumptions. We also illustrate our approach through numerical experiments using real and simulated data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA