Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
1.
Chemosphere ; : 142364, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768790

RESUMO

Constructed wetlands (CWs) represent a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the strategies for optimizing MP treatment and for enhancing the efficiency of CW systems. In addition, process-based models of constructed wetlands along with model simulations based on the artificial neural network (ANN) method are also described in relation to the data exploratory techniques. This work is expected to help open up new possibilities for plant-microbe cooperative remediation in relation to diverse patterns of organic MPs in CWs.

2.
J Microbiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777985

RESUMO

Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.

3.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696244

RESUMO

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Assuntos
Cromo , Hidróxidos , Ferro , Hidróxidos/química , Ferro/química , Cromo/química , Soroalbumina Bovina/química , Adsorção , Substâncias Húmicas , Água/química , Precipitação Química , Alginatos/química
4.
Gastrointest Endosc ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583543

RESUMO

BACKGROUND AND AIMS: Endobiliary radiofrequency ablation (RFA) is an emerging endoscopic palliative adjunctive therapy used for the local treatment of unresectable malignant biliary obstruction (MBO). However, irregular ablation ranges caused by insufficient electrode-to-bile duct contact pose a significant obstacle. The aim was to investigate the feasibility of a self-expandable stent (SES)-based electrode with a customized RFA generator in the porcine liver and common bile duct (CBD). METHODS: A SES-RFA system with polarity-switching was developed to perform endobiliary RFA. The ablation ranges of 20 ablation protocols were evaluated to validate the feasibility of the newly developed RFA system in the porcine liver. Nine of the 20 ablation protocols were selected for evaluation in the porcine CBD with cholangiography, endoscopy, and histological and immunohistochemical analysis. RESULTS: The SES-RFA system with polarity-switching was successfully constructed and demonstrated high accuracy and reproducibility. The ablation area was clearly identified between the two SESs. The ablation ranges and degree of mucosal damage including TUNEL- and HSP70-positive depositions increased proportionally with ablation protocols in the porcine liver and CBD (all P < .05). Ablation length and depth linearly increased with ablation protocols from 8.74 ± 0.25 to 31.25 ± 0.67 mm and 1.61 ± 0.09 to 11.94 ± 0.44 mm, respectively. CONCLUSIONS: The SES-RFA system with polarity-switching between electrodes provided an even circumferential area of ablation and enhanced ablation depth between the electrodes. This novel endobiliary RFA system is a promising modality for local ablation in patients with unresectable MBO.

5.
J Colloid Interface Sci ; 666: 232-243, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598996

RESUMO

HYPOTHESIS: Understanding the mechanisms of proton transfer on quartz surfaces in water is critical for a range of processes in geochemical, environmental, and materials sciences. The wide range of surface acidities (>9 pKa units) found on the ubiquitous mineral quartz is caused by the structural variations of surface silanol groups. Molecular scale simulations provide essential tools for elucidating the origin of site-specific surface acidities. SIMULATIONS: We used density-functional tight-binding-based molecular dynamics combined with rare-event metadynamics simulations to probe the mechanisms of deprotonation reactions from ten representative surface silanol groups found on both pristine and defect-rich quartz (101) surfaces with Si vacancies. FINDINGS: The results show that deprotonation is a highly dynamic process where both the surface hydroxyls and bridging oxygen atoms serve as the proton acceptors, in addition to water. Deprotonation of embedded silanols through intrasurface proton transfer exhibited lower pKa values with less H-bond participation and higher energy barriers, suggesting a new mechanism to explain the bimodal acidity observed on quartz surface. Defect sites, recently shown to comprise a significant portion of the quartz (101) surface, diversify the coordination and local H-bonding environments of the surface silanols, changing both the deprotonation pathways and energetics, leading to a wider range of pKa values (2.4 to 11.5) than that observed on pristine quartz surface (10.4 and 12.1).

6.
Environ Sci Technol ; 58(16): 7133-7143, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587400

RESUMO

Reactions of mineral surfaces with dissolved metal ions at far-from-equilibrium conditions can deviate significantly from those in near-equilibrium systems due to steep concentration gradients, ion-surface interactions, and reactant transport effects that can lead to emergent behavior. We explored the effect of dissolved Pb2+ on the dissolution rate and topographic evolution of calcite (104) surfaces under far-from-equilibrium acidic conditions (pH 3.7) in a confined single-pass laminar-flow geometry. Operando measurements by digital holographic microscopy were conducted over a range of Pb2+ concentrations ([Pb2+] = 0 to 5 × 10-2 M) and flow velocities (v = 1.67-53.3 mm s-1). Calcite (104) surface dissolution rates decreased with increasing [Pb2+]. The inhibition of dissolution and the emergence of unique topographic features, including micropyramids, variable etch pit shapes, and larger scale topographic patterns, became increasingly apparent at [Pb2+] ≥ 5 × 10-3 M. A better understanding of such dynamic reactivity could be crucial for constructing accurate models of geochemical transport in aqueous carbonate systems.

7.
Front Immunol ; 15: 1320094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576611

RESUMO

Background: Myelin oligodendrocyte glycoprotein antibody (MOG) immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and pathophysiological features that are similar to but distinct from those of aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1 subtype, can both activate the complement system. Therefore, we investigated whether the levels of serum complement components, regulators, and activation products differ between MOGAD and AQP4-NMOSD, and if complement analytes can be utilized to differentiate between these diseases. Methods: The sera of patients with MOGAD (from during an attack and remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17), and healthy controls (N=38) were analyzed for C1q-binding circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble terminal complement complex (sC5b-9). Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9 was increased only in the NMOSD group. In MOGAD, there were no differences in the concentrations of complement analytes based on disease status. However, within AQP4-NMOSD, remission samples indicated a higher C1-INH level than attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications during attack showed lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on medication. Among patients not on medication at the time of attack sampling, serum MOG-IgG cell-based assay (CBA) score had a positive correlation with iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049, respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH level (rho=0.836, p=0.003). Conclusions: This study indicates a higher prominence of complement pathway activation and subsequent C3 degradation in MOGAD compared to AQP4-NMOSD. On the other hand, the production of terminal complement complexes (TCC) was found to be more substantial in AQP4-NMOSD than in MOGAD. These findings suggest a strong regulation of the complement system, implying its potential involvement in the pathogenesis of MOGAD through mechanisms that extend beyond TCC formation.


Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Complemento C1q , Complemento C3b , Proteínas do Sistema Complemento , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito
8.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653412

RESUMO

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Assuntos
Antioxidantes , Carvão Vegetal , Metais Pesados , Microbiota , Prunus dulcis , Microbiologia do Solo , Poluentes do Solo , Solanum lycopersicum , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Microbiota/efeitos dos fármacos , Disponibilidade Biológica , Solo/química
9.
Adv Mater ; : e2310672, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659412

RESUMO

The internal crystallinity of calcite is investigated for samples synthesized using two approaches: precipitation from solution and the ammonium carbonate diffusion method. Scanning electron microscopy (SEM) analyses reveal that the calcite products precipitated using both approaches have a well-defined rhombohedron shape, consistent with the euhedral crystal habit of the mineral. The internal structure of these calcite crystals is characterized using Bragg coherent diffraction imaging (BCDI) to determine the 3D electron density and the atomic displacement field. BCDI reconstructions for crystals synthesized using the ammonium carbonate diffusion approach have the expected euhedral shape, with internal strain fields and few internal defects. In contrast, the crystals synthesized by precipitation from solution have very complex external shapes and defective internal structures, presenting null electron density regions and pronounced displacement field distributions. These heterogeneities are interpreted as multiple crystalline domains, created by a nonclassical crystallization mechanism, where smaller nanoparticles coalescence into the final euhedral particles. The combined use of SEM, X-ray diffraction (XRD), and BCDI allows for structurally differentiating calcite crystals grown with different approaches, opening new opportunities to understand how grain boundaries and internal defects alter calcite reactivity.

10.
J Phys Chem Lett ; 15(13): 3493-3501, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517335

RESUMO

Mitigating uranium transport in groundwater is imperative for ensuring access to clean water across the globe. Here, in situ resonant anomalous X-ray reflectivity is used to investigate the adsorption of uranyl on alumina (012) in acidic aqueous solutions, representing typical UVI concentrations of contaminated water near mining sites. The analyses reveal that UVI adsorbs at two distinct heights of 2.4-3.2 and 5-5.3 Å from the surface terminal oxygens. The former is interpreted as the mixture of inner-sphere and outer-sphere complexes that adsorb closest to the surface. The latter is interpreted as an outer-sphere complex that shares one equatorial H2O with the terminal surface oxygen. With increasing pH, we observe an increasing prevalence of these outer-sphere complexes, indicating the enhanced role of the hydrogen bond that stabilizes adsorbed uranyl species. The presented work provides a molecular-scale understanding of sorption of uranyl on Al-based-oxide surfaces that has implications for environmental chemistry and materials science.

11.
Chemosphere ; 355: 141771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522668

RESUMO

The environmental impact of biodegradable polylactic acid microplastics (PLA-MPs) has become a global concern, with documented effects on soil health, nutrient cycling, water retention, and crop growth. This study aimed to assess the repercussions of varying concentrations of PLA-MPs on rice, encompassing aspects such as growth, physiology, and biochemistry. Additionally, the investigation delved into the influence of PLA-MPs on soil bacterial composition and soil enzyme activities. The results illustrated that the highest levels of PLA-MPs (2.5%) impaired the photosynthesis activity of rice plants and hampered plant growth. Plants exposed to the highest concentration of PLA-MPs (2.5%) displayed a significant reduction of 51.3% and 47.7% in their root and shoot dry weights, as well as a reduction of 53% and 49% in chlorophyll a and b contents, respectively. The activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in rice leaves increased by 3.1, 2.8, 3.5, and 5.2 folds, respectively, with the highest level of PLA-MPs (2.5%). Soil enzyme activities, such as CAT, urease, and dehydrogenase (DHA) increased by 19.2%, 10.4%, and 22.5%, respectively, in response to the highest level of PLA-MPs (2.5%) application. In addition, PLA-MPs (2.5%) resulted in a remarkable increase in the relative abundance of soil Proteobacteria, Nitrospirae, and Firmicutes by 60%, 31%, and 98.2%, respectively. These findings highlight the potential adverse effects of PLA-MPs on crops and soils. This study provides valuable insights into soil-rice interactions, environmental risks, and biodegradable plastic regulation, underscoring the need for further research.


Assuntos
Plásticos Biodegradáveis , Oryza , Solo , Plântula , Microplásticos/toxicidade , Plásticos/toxicidade , Clorofila A , Poliésteres
12.
J Virol Methods ; 326: 114911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447644

RESUMO

Quantitative PCR (qPCR) is the gold standard for detecting nucleic acid sequences specific to the target pathogen. For COVID-19 diagnosis, several molecular assays have been developed. In this study, we present an optimization strategy for the measurement of SARS-CoV-2 RNA via multiplex qPCR and digital PCR (dPCR). Compared to qPCR, both droplet and chip-based dPCR, which are known to be more sensitive and accurate, showed a better resilience to suboptimal assay compositions and cycling conditions following the proposed optimizations. In particular, the formation of heterodimers among assays greatly interfered with qPCR results, but only minimally with dPCR results. In dPCR, existing heterodimers lowered the PCR efficiency, producing a dampened fluorescent signal in positive partitions. This can be corrected by adjusting the PCR cycling conditions, after which dPCR shows the capability of measuring the expected copy number. In addition, we present a process to improve the existing RdRp assay by correcting the primer sequences and matching the melting temperature, ultimately producing highly sensitive and robust assays. The results of this study can reduce the cost and time of SARS-CoV-2 diagnosis while increasing accuracy. Furthermore, our results suggest that dPCR is a reliable method for the accurate measurement of nucleic acid targets.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Teste para COVID-19 , COVID-19/diagnóstico
13.
Int Immunopharmacol ; 132: 111930, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537538

RESUMO

Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.


Assuntos
COVID-19 , Ensaios Clínicos como Assunto , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , COVID-19/terapia , Tratamento Farmacológico da COVID-19
14.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485259

RESUMO

Sleep is regulated by homeostatic sleep drive and the circadian clock. While tremendous progress has been made in elucidating the molecular components of the core circadian oscillator, the output mechanisms by which this robust oscillator generates rhythmic sleep behavior remain poorly understood. At the cellular level, growing evidence suggests that subcircuits in the master circadian pacemaker suprachiasmatic nucleus (SCN) in mammals and in the clock network in Drosophila regulate distinct aspects of sleep. Thus, to identify novel molecules regulating the circadian timing of sleep, we conducted a large-scale screen of mouse SCN-enriched genes in Drosophila Here, we show that Tob (Transducer of ERB-B2) regulates the timing of sleep onset at night in female fruit flies. Knockdown of Tob pan-neuronally, either constitutively or conditionally, advances sleep onset at night. We show that Tob is specifically required in "evening neurons" (the LNds and the fifth s-LNv) of the clock network for proper timing of sleep onset. Tob levels cycle in a clock-dependent manner in these neurons. Silencing of these "evening" clock neurons results in an advanced sleep onset at night, similar to that seen with Tob knockdown. Finally, sharp intracellular recordings demonstrate that the amplitude and kinetics of LNd postsynaptic potentials (PSPs) cycle between day and night, and this cycling is attenuated with Tob knockdown in these cells. Our data suggest that Tob acts as a clock output molecule in a subset of clock neurons to potentiate their activity in the evening and enable the proper timing of sleep onset at night.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila , Drosophila , Sono , Animais , Feminino , Animais Geneticamente Modificados , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia
15.
Bioact Mater ; 37: 172-190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549771

RESUMO

Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.

16.
Rev Med Virol ; 34(2): e2526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446531

RESUMO

miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , SARS-CoV-2/genética , COVID-19/genética , Vírus Sinciciais Respiratórios , Rhinovirus
17.
Pancreatology ; 24(3): 424-430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395676

RESUMO

BACKGROUND: Modified FOLFIRINOX (mFOLFIRINOX) is one of the standard first-line therapies in borderline resectable pancreatic cancer (BRPC) and locally advanced unresectable pancreatic cancer (LAPC). However, there is no globally accepted second-line therapy following progression on mFOLFIRINOX. METHODS: Patients with BRPC and LAPC (n = 647) treated with first-line mFOLFIRINOX between January 2017 and December 2020 were included in this retrospective analysis. The details of the treatment outcomes and patterns of subsequent therapy after mFOLFIRINOX were reviewed. RESULTS: With a median follow-up duration of 44.2 months (95% confidence interval [CI], 42.3-47.6), 322 patients exhibited disease progression on mFOLFIRINOX-locoregional progression only in 177 patients (55.0%) and distant metastasis in 145 patients (45.0%). The locoregional progression group demonstrated significantly longer post-progression survival (PPS) than that of the distant metastasis group (10.1 vs. 7.3 months, p = 0.002). In the locoregional progression group, survival outcomes did not differ between second-line chemoradiation/radiotherapy and systemic chemotherapy (progression-free survival with second-line therapy [PFS-2], 3.2 vs. 4.3 months; p = 0.649; PPS, 10.7 vs. 10.2 months; p = 0.791). In patients who received second-line systemic chemotherapy following progression on mFOLFIRINOX (n = 211), gemcitabine plus nab-paclitaxel was associated with better disease control rates (69.2% vs. 42.3%, p = 0.005) and PFS-2 (3.8 vs. 1.7 months, p = 0.035) than gemcitabine monotherapy. CONCLUSIONS: The current study showed the real-world practice pattern of subsequent therapy and clinical outcomes following progression on first-line mFOLFIRINOX in BRPC and LAPC. Further investigation is necessary to establish the optimal therapy after failure of mFOLFIRINOX.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gencitabina , Estudos Retrospectivos , Adenocarcinoma/patologia , Fluoruracila/uso terapêutico , Leucovorina/uso terapêutico , Terapia Neoadjuvante , Progressão da Doença , Irinotecano , Oxaliplatina
18.
Value Health Reg Issues ; 42: 18-25, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38350187

RESUMO

OBJECTIVES: This study aimed to assess the impact of the reimbursement regulation of medical devices (Regulation), introduced by the National Health Insurance Administration (NHIA) in 2013, on patients' access to innovative medical devices in Taiwan. METHODS: Analysis of the amount of time needed from application for NHIA reimbursement for new medical devices to receiving the decision from NHIA was done using the nonreimbursement product list featured on the NHIA website. Additionally, Welch analysis of variance was used to compare the amount of time it took from application to NHIA with reimbursement decisions made by the NHIA for different nonreimbursement code categories. Further, related Pharmaceutical Benefit Reimbursement Scheme meeting minutes were analyzed to obtain more detailed information concerning medical devices' reimbursement or not. RESULTS: From December 2012 to June 2021, the overall reimbursement percentage was 56.7%, and the average amount of time between application and reimbursement was 856.7 ± 474.7 days. The mandatory reimbursement rate was about 45%. NHIA reimbursement decisions as special medical devices also take a longer amount of time, because the applicants need to agree to the decision (P < .05). The NHIA decision-making process for nonreimbursement medical devices requires a significantly longer amount of time than for general materials (eg, suture, etc) decisions. CONCLUSIONS: Although the Regulation resolves payment issues, it also increases the amount of time to reach reimbursement decisions, thus hindering patient access to innovative medical devices. The study suggests that the review process needs to be simplified concerning reimbursement notification, using local real-world data to support reimbursement decisions.

19.
Environ Res ; 247: 118127, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220075

RESUMO

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Assuntos
Ecossistema , Ecótipo , Mudança Climática , Poaceae/química , Poaceae/metabolismo , Biomassa , Antioxidantes/metabolismo
20.
Mol Biotechnol ; 66(2): 163-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37244882

RESUMO

Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.


Assuntos
Metodologias Computacionais , Simulação de Dinâmica Molecular , Teoria Quântica , Dobramento de Proteína , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA