Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(34): 23320-23330, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39151093

RESUMO

The high interface resistance at the cathode-sulfide electrolyte interface is still a crucial drawback in an all-solid-state battery, unlike the initial expectation that the all-solid-state interface would enhance electrochemical stability by reducing side reactions at the interface. In this study, we examined the fundamental mechanism of unexpected reactions at the interface of LiNi0.8Co0.1Mn0.1O2 (NCM811) and argyrodite (Li6PS5Br0.5Cl0.5, LPSBC) sulfide solid electrolytes based on the combined method of multiscale simulations and electrochemical experiments. The high interface resistance originates from the formation of a passivating layer at the interface combined with irregular atomic and electronic structures, Li depletion, mutual element exchange, and mechanical contact loss between the oxide cathode and sulfide solid electrolyte. We also confirmed that these side reactions were suppressed by O substitutions to sulfide solid electrolyte (LPSOBC), and then the chemo-mechanical stability of the all-solid battery was enhanced by alleviating the side reactions at the interface. This study provides rational insights into the design of an interface for all-solid-state batteries.

2.
Nanomaterials (Basel) ; 8(6)2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29912159

RESUMO

In photodynamic therapy (PDT), chlorin e6 (Ce6), with its high phototoxic potential and strong absorption of visible light, penetrates deeply into photodamaged tissue. However, despite this fact, the direct application of Ce6 to PDT has been limited by its low water solubility and poor cancer cell localization. To ameliorate this situation, we report herein on the use of a hydrophilic nanoconjugate (DC) comprised of Ce6 and poly(amidoamine) dendrimer, which improves the water solubility and intracellular uptake of Ce6, thereby enhancing PDT efficacy. The synthesis of DC was verified by ¹H nuclear magnetic resonance (NMR) analysis, and the coupling ratio of Ce6 introduced onto DC was 2.64. The prepared DC was spherical, with an average diameter of 61.7 ± 3.5 nm. In addition, the characteristic ultraviolet-visible absorption bands of DC in distilled water were similar to those of free Ce6 in dimethyl sulfoxide (DMSO), indicating that the Ce6 chromophore did not change upon conjugation. Investigation using fluorescence spectroscopy and confocal microscopy revealed a greater intracellular uptake of DC than of Ce6 alone. Moreover, DC exhibited significantly increased phototoxicity to human cervical cancer cells, mostly because of apoptotic cell death. These results imply that DC is a candidate for the clinical treatment of PDT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA