Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659748

RESUMO

Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long timescales. Recent advances in rare event sampling have allowed us to reach these timescales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitudes of timescales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anti-cancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.

2.
Ecotoxicol Environ Saf ; 272: 116108, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364764

RESUMO

The importance of evaluating the cardiotoxicity potential of common chemicals as well as new drugs is increasing as a result of the development of animal alternative test methods using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Bisphenol A (BPA), which is used as a main material in plastics, is known as an endocrine-disrupting chemical, and recently reported to cause cardiotoxicity through inhibition of ion channels in CMs even with acute exposure. Accordingly, the need for the development of alternatives to BPA has been highlighted, and structural analogues including bisphenol AF, C, E, F, and S have been developed. However, cardiotoxicity data for analogues of bisphenol are not well known. In this study, in order to evaluate the cardiotoxicity potential of analogues, including BPA, a survival test of hiPSC-CMs and a dual-cardiotoxicity evaluation based on a multi-electrode array were performed. Acute exposure to all bisphenol analogues did not affect survival rate, but spike amplitude, beat period, and field potential duration were decreased in a dose-dependent manner in most of the bisphenols except bisphenol S. In addition, bisphenols, except for bisphenol S, reduced the contractile force of hiPSC-CMs and resulted in beating arrest at high doses. Taken together, it can be suggested that the developed bisphenol analogues could cause cardiotoxicity even with acute exposure, and it is considered that the application of the MEA-based dual-cardiotoxicity evaluation method can be an effective help in the development of safe alternatives.


Assuntos
Compostos Benzidrílicos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Cardiotoxicidade/etiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fenóis/toxicidade
3.
Biotechnol J ; 19(1): e2300311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953523

RESUMO

Beyond single cell two-dimensional (2D) culture, research on organoids that can mimic human organs is rapidly developing. However, there are still problems in commercialization and joint research using organoids due to the lack of technology to safely store organoids. Since organoids are 3D complex structures with a certain size (0.1-5 mm) beyond the size of cells, the conventional cell-level cryopreservation method using cryoprotectant (CPA) cannot overcome the damage caused by volume change due to osmotic pressure difference and ice nucleation. Herein, we attempted to solve such limitations by applying a nanowarming system using CPA with high cell permeability and Fe3 O4 nanoparticles. By performing beat rate measurement, histological analysis, contractility analysis, and multi-electrode array, it was verified that the developed method could significantly improve functional recovery and survival of heart organoids after freezing and thawing. In this study, we demonstrated a successful organoid cryopreservation method based on a Fe3 O4 nanowarming system. The developed technology will provide clues to the field of tissue cryopreservation and spur the application of organoids.


Assuntos
Criopreservação , Nanopartículas , Humanos , Criopreservação/métodos , Congelamento , Crioprotetores/farmacologia , Organoides
4.
RSC Adv ; 13(48): 34167-34182, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020026

RESUMO

Antimicrobial peptides (AMPs), naturally-occurring peptide antibiotics, are known to attack bacteria selectively over the host cells. The emergence of drug-resistant bacteria has spurred much effort in utilizing optimized (more selective) AMPs as new peptide antibiotics. Cell selectivity of these peptides depends on various factors or parameters such as their binding affinity for cell membranes, peptide trapping in cells, peptide coverages on cell membranes required for membrane rupture, and cell densities. In this work, using a biophysical model of peptide selectivity, we show this dependence quantitatively especially for a mixture of bacteria and host cells. The model suggests a rather nontrivial dependence of the selectivity on the presence of host cells, cell density, and peptide trapping. In a typical biological setting, peptide trapping works in favor of host cells; the selectivity increases with increasing host-cell density but decreases with bacterial cell density. Because of the cell-density dependence of peptide activity, the selectivity can be overestimated by two or three orders of magnitude. The model also clarifies how the cell selectivity of AMPs differs from their membrane selectivity.

5.
J Phys Ther Sci ; 27(7): 2257-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26311964

RESUMO

[Purpose] The purpose of this study was to measure and observe the changes in dynamic plantar pressures when school children carried specific bag loads, and to determine whether improved physical balance after an eight-week spinal stabilization exercise program can influences plantar pressures. [Subjects] The subjects were 10 school students with Cobb angles of 10° or greater. [Methods] Gait View Pro 1.0 (Alfoots, Korea) was were based on to measure the pressure of the participants' feet. Spinal stabilization exercises used TOGU Multi-roll Functional (TOGU, Germany) training. Dynamic plantar pressures were measured with bag loads of 0% no bag and 15% of subjects' body weight. The independent t test was performed to analyze changes in plantar pressures. [Results] The plantar pressure measurements of bag load of 0% of subjects' body weight before and after the spinal stabilization exercise program were not significantly different, but those of two foot areas with a 15% load were statistically significant (mt5, 67.32±24.25 and 51.77±25.52 kPa; lat heel, 126.00±20.46 and 102.08±23.87 kPa). [Conclusion] After performance of the spinal stabilization exercises subjects' overall plantar pressures were reduced, which may suggest that physical balance improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA