Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Virol ; 87(13): 7585-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637405

RESUMO

Previous binding studies of antibodies that recognized a partially or fully hidden epitope suggest that insect cell-derived dengue virus undergoes structural changes at an elevated temperature. This was confirmed by our cryo-electron microscopy images of dengue virus incubated at 37°C, where viruses change their surface from smooth to rough. Here we present the cryo-electron microscopy structures of dengue virus at 37°C. Image analysis showed four classes of particles. The three-dimensional (3D) map of one of these classes, representing half of the imaged virus population, shows that the E protein shell has expanded and there is a hole at the 3-fold vertices. Fitting E protein structures into the map suggests that all of the interdimeric and some intradimeric E protein interactions are weakened. The accessibility of some previously found cryptic epitopes on this class of particles is discussed.


Assuntos
Vírus da Dengue/química , Vírus da Dengue/ultraestrutura , Modelos Moleculares , Conformação Proteica , Temperatura , Proteínas do Envelope Viral/ultraestrutura , Animais , Linhagem Celular , Microscopia Crioeletrônica , Culicidae , Eletroforese em Gel de Poliacrilamida , Corantes de Rosanilina
2.
J Biol Chem ; 287(48): 40525-34, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23035113

RESUMO

BACKGROUND: Dengue virus surface proteins, envelope (E) and pre-membrane (prM), undergo rearrangement during the maturation process at acidic condition. RESULTS: prM-stem region binds tighter to both E protein and lipid membrane when environment becomes acidic. CONCLUSION: At acidic condition, E proteins are attracted to the membrane-associated prM-stem. SIGNIFICANCE: prM-stem region induces virus structural changes during maturation. Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111-131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.


Assuntos
Vírus da Dengue/fisiologia , Dengue/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Vírus da Dengue/química , Vírus da Dengue/genética , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
3.
BMC Gastroenterol ; 9: 76, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19822020

RESUMO

BACKGROUND: Intestinal metaplasia (IM) is an important precursor lesion in the development of gastric cancer (GC). The aim of this study was to investigate genetic factors previously linked to GC risk for their possible association with IM. A total of 18 polymorphisms in 14 candidate genes were evaluated in a Singapore-Chinese population at high risk of developing GC. METHODS: Genotype frequencies were compared between individuals presenting with (n = 128) or without (n = 246) IM by both univariate and multivariate analysis. RESULTS: Carriers of the NQO1 609 T allele showed an association with IM in individuals who were seropositive for Helicobacter pylori (HP+; OR = 2.61, 95%CI: 1.18-5.80, P = .018). The IL-10 819 C allele was also associated with IM in HP+ individuals (OR = 2.32, 95%CI: 1.21-4.43, P = 0.011), while the PTPN11 A allele was associated with IM in HP- individuals (OR = 2.51, 95%CI: 1.16-5.40, P = 0.019), but showed an inverse association in HP+ subjects (OR = 0.46, 95%CI: 0.21-0.99, P = 0.048). CONCLUSION: Polymorphisms in NQO1, IL-10 and PTPN11, in combination with HP status, could be used to identify individuals who are more likely to develop IM and therefore GC.


Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Interleucina-10/genética , Intestinos/patologia , NAD(P)H Desidrogenase (Quinona)/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Idoso , Alelos , Estudos de Casos e Controles , China/etnologia , Estudos de Coortes , Progressão da Doença , Feminino , Predisposição Genética para Doença/etnologia , Genótipo , Humanos , Masculino , Metaplasia/epidemiologia , Metaplasia/genética , Metaplasia/patologia , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Risco , Singapura/epidemiologia , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA