Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Toxicol Pathol ; 52(1): 35-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385340

RESUMO

Recombinant adeno-associated virus (AAV)-mediated degeneration of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) has been observed in non-human primates (NHPs) following intravenous (IV) and intrathecal (IT) delivery. Administration of recombinant AAV encoding a human protein transgene via a single intra-cisterna magna (ICM) injection in New Zealand white rabbits resulted in histopathology changes very similar to NHPs: mononuclear cell infiltration, degeneration/necrosis of sensory neurons, and nerve fiber degeneration of sensory tracts in the spinal cord and of multiple nerves. AAV-associated clinical signs and incidence/severity of histologic findings indicated that rabbits were equally or more sensitive than NHPs to sensory neuron damage. Another study using human and rabbit transgene constructs of the same protein demonstrated comparable changes suggesting that the effects are not an immune response to the non-self protein transgene. Rabbit has not been characterized as a species for general toxicity testing of AAV gene therapies, but these studies suggest that it may be an alternative model to investigate mechanisms of AAV-mediated neurotoxicity and test novel AAV designs mitigating these adverse effects.


Assuntos
Dependovirus , Gânglios Espinais , Animais , Coelhos , Dependovirus/genética , Vetores Genéticos , Masculino , Humanos , Transgenes , Feminino , Células Receptoras Sensoriais
2.
Mol Ther Nucleic Acids ; 34: 102057, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37928442

RESUMO

Toxic gain-of-function mutations in superoxide dismutase 1 (SOD1) contribute to approximately 2%-3% of all amyotrophic lateral sclerosis (ALS) cases. Artificial microRNAs (amiRs) delivered by adeno-associated virus (AAV) have been proposed as a potential treatment option to silence SOD1 expression and mitigate disease progression. Primary microRNA (pri-miRNA) scaffolds are used in amiRs to shuttle a hairpin RNA into the endogenous miRNA pathway, but it is unclear whether different primary miRNA (pri-miRNA) scaffolds impact the potency and safety profile of the expressed amiR in vivo. In our process to develop an AAV amiR targeting SOD1, we performed a preclinical characterization of two pri-miRNA scaffolds, miR155 and miR30a, sharing the same guide strand sequence. We report that, while the miR155-based vector, compared with the miR30a-based vector, leads to a higher level of the amiR and more robust suppression of SOD1 in vitro and in vivo, it also presents significantly greater risks for CNS-related toxicities in vivo. Despite miR30a-based vector showing relatively lower potency, it can significantly delay the development of ALS-like phenotypes in SOD1-G93A mice and increase survival in a dose-dependent manner. These data highlight the importance of scaffold selection in the pursuit of highly efficacious and safe amiRs for RNA interference gene therapy.

3.
JHEP Rep ; 5(5): 100693, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37122688

RESUMO

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

4.
Mol Pain ; 14: 1744806918801224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157705

RESUMO

Elevated N-methyl-D-aspartate receptor activity contributes to central sensitization. Our laboratories and others recently reported that disrupting protein-protein interactions downstream of N-methyl-D-aspartate receptors suppresses pain. Specifically, disrupting binding between the enzyme neuronal nitric oxide synthase and either its upstream (postsynaptic density 95 kDa, PSD95) or downstream (e.g. nitric oxide synthase 1 adaptor protein, NOS1AP) protein partners suppressed inflammatory and/or neuropathic pain. However, the lack of a small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor has hindered efforts to validate the therapeutic utility of disrupting the neuronal nitric oxide synthase-NOS1AP interface as an analgesic strategy. We, therefore, evaluated the ability of a putative small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor ZLc002 to disrupt binding between neuronal nitric oxide synthase and NOS1AP using ex vivo, in vitro, and purified recombinant systems and asked whether ZLc002 would suppress inflammatory and neuropathic pain in vivo. In vitro, ZLc002 reduced co-immunoprecipitation of full-length NOS1AP and neuronal nitric oxide synthase in cultured neurons and in HEK293T cells co-expressing full-length neuronal nitric oxide synthase and NOS1AP. However, using a cell-free biochemical binding assay, ZLc002 failed to disrupt the in vitro binding between His-neuronal nitric oxide synthase1-299 and glutathione S-transferase-NOS1AP400-506, protein sequences containing the required binding domains for this protein-protein interaction, suggesting an indirect mode of action in intact cells. ZLc002 (4-10 mg/kg i.p.) suppressed formalin-evoked inflammatory pain in rats and reduced Fos protein-like immunoreactivity in the lumbar spinal dorsal horn. ZLc002 also suppressed mechanical and cold allodynia in a mouse model of paclitaxel-induced neuropathic pain. Anti-allodynic efficacy was sustained for at least four days of once daily repeated dosing. ZLc002 also synergized with paclitaxel when administered in combination to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability but did not alter tumor cell viability without paclitaxel. Our results verify that ZLc002 disrupts neuronal nitric oxide synthase-NOS1AP interaction in intact cells and demonstrate, for the first time, that systemic administration of a putative small-molecule inhibitor of neuronal nitric oxide synthase-NOS1AP suppresses inflammatory and neuropathic pain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Paclitaxel/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neurônios , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Pain ; 159(5): 849-863, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29319606

RESUMO

Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Animais , Masculino , Camundongos , Neuralgia/etiologia , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medição da Dor , Traumatismos dos Nervos Periféricos/complicações , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Sci Rep ; 7(1): 944, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428628

RESUMO

The G-protein coupled receptor GPR55 has been postulated to serve as a novel cannabinoid receptor. A previous report indicated that GPR55 knockout mice fail to develop mechanical hyperalgesia, suggesting a pro-nociceptive role for GPR55 in the control of nociceptive responding. However, GPR55 knockout mice remain incompletely characterized in models of pathological pain. Here we provide a comprehensive assessment of responses of GPR55 knockout and wild-type mice to mechanical and thermal (heat, cold) stimulation in multiple, mechanistically distinct models of inflammatory and neuropathic pain. Inflammatory sensitization was produced by intraplantar administration of capsaicin, formalin or complete Freund's adjuvant. No differences in responding were detected between GPR55 knockout and wild-type mice in any model of inflammatory nociception assessed. Neuropathic pain was induced by partial sciatic nerve ligation (which induces hypersensitivity to mechanical, cold and heat stimulation) or by treatment with the chemotherapeutic agent paclitaxel (which induces hypersensitivity to mechanical and cold stimulation only). No differences were observed between GPR55 knockout and wild type mice in either development or maintenance of neuropathic nociception in either neuropathic pain model. In conclusion, genetic deletion of GPR55 did not alter the development of pathological pain in adult mice in any chronic pain model evaluated.


Assuntos
Neuralgia/genética , Nociceptividade , Receptores de Canabinoides/genética , Animais , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/fisiopatologia , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia
7.
Neuroscience ; 349: 303-317, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285942

RESUMO

Excessive activation of NMDA receptor (NMDAR) signaling within the spinal dorsal horn contributes to central sensitization and the induction and maintenance of pathological pain states. However, direct antagonism of NMDARs produces undesirable side effects which limit their clinical use. NMDAR activation produces central sensitization, in part, by initiating a signaling cascade that activates the enzyme neuronal nitric oxide synthase (nNOS) and generates the signaling molecule nitric oxide. NMDAR-mediated activation of nNOS requires a scaffolding protein, postsynaptic density protein 95kDa (PSD95), which tethers nNOS to NMDARs. Thus, disrupting the protein-protein interaction between PSD95 and nNOS may inhibit pro-nociceptive signaling mechanisms downstream of NMDARs and suppress central sensitization while sparing unwanted side effects associated with NMDAR antagonists. We examined the impact of small molecule PSD95-nNOS protein-protein interaction inhibitors (ZL006, IC87201) on both nociceptive behavior and formalin-evoked Fos protein expression within the lumbar spinal cord of rats. Comparisons were made with ZL007, an inactive analog of ZL006, and the NMDAR antagonist MK-801. IC87201 and ZL006, but not ZL007, suppressed phase 2 of formalin-evoked pain behavior and decreased the number of formalin-induced Fos-like immunoreactive cells in spinal dorsal horn regions associated with nociceptive processing. MK-801 suppressed Fos protein expression in both dorsal and ventral horns. MK-801 produced motor ataxia in the rotarod test whereas IC87201 and ZL006 failed to do so. ZL006 but not ZL007 suppressed paclitaxel-induced mechanical and cold allodynia in a model of chemotherapy-induced neuropathic pain. Co-immunoprecipitation experiments revealed the presence of the PSD95-nNOS complex in lumbar spinal cord of paclitaxel-treated rats, although ZL006 did not reliably disrupt the complex in all subjects. The present findings validate use of putative small molecule PSD95-nNOS protein-protein interaction inhibitors as novel analgesics and demonstrate, for the first time, that these inhibitors suppress inflammation-evoked neuronal activation at the level of the spinal dorsal horn.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Óxido Nítrico Sintase Tipo I/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Formaldeído/farmacologia , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Nociceptores/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo
8.
Pharmacol Res ; 114: 75-89, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27773824

RESUMO

Neuropathic pain impacts approximately 3-4.5% of the global population and remains an unresolved health problem. The management of neuropathic pain has two distinct goals-prevention of development and control of established neuropathic pain. We examined the impact of both prophylactic and therapeutic treatments with the tricyclic antidepressant desipramine on the development and maintenance of toxic neuropathic pain induced by the chemotherapeutic agent paclitaxel. We also investigated the involvement of endogenous analgesic (i.e., endogenous opioid and endocannabinoid) systems in the antinociceptive actions of desipramine in these two distinct phases of neuropathic pain. Chronic subcutaneous infusion of desipramine via osmotic pumps suppressed both the development and maintenance of paclitaxel-induced neuropathic pain. However, only prophylactic desipramine treatment blocked the development of neuropathic pain throughout the three month observation interval; neuropathic pain did not return. The opioid receptor antagonist naloxone blocked the antinociceptive effects of both prophylactic and therapeutic desipramine treatments throughout the entire timecourse of desipramine-induced antinociception. By contrast, cannabinoid CB1 and CB2 receptor antagonists partially attenuated the antinociceptive actions of desipramine in a manner that was restricted to the development phase of paclitaxel-induced neuropathic pain only. Paclitaxel decreased cell viability in TMD231 tumor cells in an MTT assay in vitro. Notably, desipramine (1nM-1µM) alone did not alter tumor cell viability and did not prevent the cytotoxic effects of paclitaxel under identical conditions. The highest concentration of desipramine (10µM) reduced tumor cell viability alone and enhanced the cytotoxic effects of paclitaxel. Our study identifies a previously unrecognized preemptive analgesic strategy that prevents development of paclitaxel-induced neuropathic pain, and also dissects receptor mechanisms underlying desipramine-induced antinociceptive effects. This information may be applied to improve current therapeutic strategies with the goal of preventing and managing neuropathic pain induced by chemotherapeutic treatment.


Assuntos
Antidepressivos Tricíclicos/uso terapêutico , Antineoplásicos Fitogênicos/efeitos adversos , Desipramina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/prevenção & controle , Paclitaxel/efeitos adversos , Animais , Antidepressivos Tricíclicos/farmacologia , Desipramina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Masculino , Ratos Sprague-Dawley , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Neuropharmacology ; 97: 464-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26071110

RESUMO

Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund's adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Analgésicos/farmacologia , Benzilaminas/farmacologia , Clorofenóis/farmacologia , Triazóis/farmacologia , Animais , Ataxia/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/fisiopatologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA