Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Discov Ther ; 18(3): 199-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987208

RESUMO

Senolytics are drugs that specifically target senescent cells. Flavonoids such as quercetin and fisetin possess selective senolytic activities. This study aims to investigate if chalcones exhibit anti-senescence activities. Anti-senescence effect of 11 chalcone derivatives on the replicative senescence human aortic endothelial cells (HAEC) and human fetal lung fibroblasts (IMR90) was evaluated. Compound 2 (4-methoxychalcone) and compound 4 (4-bromo-4'-methoxychalcone) demonstrated increased cytotoxicity in senescent HAEC compared to young HAEC, with significant differences on IC50 values. Their anti-senescence effects on HAEC exceeded fisetin. Higher selectivity of compound 4 toward HAEC over IMR90 could be attributed to 4-methoxy (4-OMe) substitution at ring A (R1). Chalcone derivatives have potentials as senolytics in mitigating replicative senescence, warranting further research and development on chalcones as anti-senescent agent.


Assuntos
Senescência Celular , Chalconas , Células Endoteliais , Fibroblastos , Humanos , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Chalconas/farmacologia , Fibroblastos/efeitos dos fármacos , Células Cultivadas , Senoterapia/farmacologia , Concentração Inibidora 50 , Aorta/efeitos dos fármacos , Aorta/citologia , Relação Estrutura-Atividade , Linhagem Celular
2.
Med Chem ; 19(9): 897-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37046198

RESUMO

BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen. OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties. METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z). RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 µM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit. CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proliferação de Células , Células HCT116 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
3.
Mar Drugs ; 20(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36135769

RESUMO

A marine natural product possesses a diverse and unique scaffold that contributes to a vast array of bioactivities. Tricyclic guanidine alkaloids are a type of scaffold found only in marine natural products. These rare skeletons exhibit a wide range of biological applications, but their synthetic approaches are still limited. Various stereochemical assignments of the compounds remain unresolved. Batzelladine and ptilocaulins are an area of high interest in research on tricyclic guanidine alkaloids. In addition, mirabilins and netamines are among the other tricyclic guanidine alkaloids that contain the ptilocaulin skeleton. Due to the different structural configurations of batzelladine and ptilocaulin, these two main skeletons are afforded attention in many reports. These two main skeletons exhibit different kinds of compounds by varying their ester chain and sidechain. The synthetic approaches to tricyclic guanidine alkaloids, especially the batzelladine and ptilocaulin skeletons, are discussed. Moreover, this review compiles the first and latest research on the synthesis of these compounds and their bioactivities, dating from the 1980s to 2022.


Assuntos
Alcaloides , Produtos Biológicos , Alcaloides/química , Ésteres , Guanidina/química , Guanidina/farmacologia , Guanidinas/química , Estereoisomerismo
4.
PLoS One ; 17(7): e0270970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819953

RESUMO

There is an increasing demand in developing new, effective, and affordable anti-cancer against colon and rectal. In this study, our aim is to identify the potential anthraquinone compounds from the root bark of Morinda citrifolia to be tested in vitro against colorectal cancer cell lines. Eight potential anthraquinone compounds were successfully isolated, purified and tested for both in-silico and in-vitro analyses. Based on the in-silico prediction, two anthraquinones, morindone and rubiadin, exhibit a comparable binding affinity towards multitargets of ß-catenin, MDM2-p53 and KRAS. Subsequently, we constructed a 2D interaction analysis based on the above results and it suggests that the predicted anthraquinones from Morinda citrifolia offer an attractive starting point for potential antiproliferative agents against colorectal cancer. In vitro analyses further indicated that morindone and damnacanthal have significant cytotoxicity effect and selectivity activity against colorectal cancer cell lines.


Assuntos
Neoplasias Colorretais , Morinda , Antraquinonas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Morinda/química , Raízes de Plantas/química
5.
Mol Biotechnol ; 63(4): 316-326, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33565047

RESUMO

Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.


Assuntos
Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Flavanonas/metabolismo , Zingiberaceae/enzimologia , Sítios de Ligação , Sistema Livre de Células , Dimetilaliltranstransferase/química , Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Peso Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Zingiberaceae/genética
6.
PeerJ ; 8: e9094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391211

RESUMO

Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.

7.
Curr Med Chem ; 27(30): 4945-5036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30514185

RESUMO

To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.


Assuntos
Vírus da Dengue , Dengue , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Humanos , Proteínas não Estruturais Virais
8.
Analyst ; 144(6): 1968-1974, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30694266

RESUMO

Preparation of selective magnetic adsorbents for dispersive micro-solid phase extraction often involves multi-step reactions which are time consuming. This study demonstrates a simplified method for the synthesis of a magnetic adsorbent, which is selective towards the adsorption of mercury(ii) ions (Hg2+). In this method, the incorporation of a metal capturing ligand (3-oxo-1,3-diphenylpropyl-2-(naphthalen-2-ylamino) ethylcarbamodithioate) and the coating of magnetic particles with silica gel was performed in a single step. This adsorbent was then used in solid-phase microextraction for the preconcentration of Hg2+ in water. In this study, a mercury analyzer was used to quantify the Hg2+. Under optimized conditions, the developed analytical method achieved a low detection limit (4.0 ng L-1), satisfactory enrichment factor (96.4) and wide linearity range (50.0-5000 ng L-1) with a good coefficient of determination (0.9985) and good repeatability (<7%). The preconcentration factor of this method was 100. This proposed method was also successfully utilized for the determination of Hg2+ in drinking water, tap water and surface water with good recovery (>91%) and high intra-day and inter-day precision.

9.
PeerJ ; 5: e3939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404200

RESUMO

Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

10.
Chem Biol Drug Des ; 91(1): 213-219, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28719017

RESUMO

Both sirtuin and poly(ADP-ribose)polymerase (PARP) family of enzymes utilize NAD+ as co-substrate. Inhibitors of sirtuins and PARPs are important tools in drug discovery as they are reported to be linked to multiple diseases such as cancer. New potent sirtuin inhibitors (2,4,6-trisubstituted benzimidazole) were discovered from reported PARP inhibitor scaffold. Interestingly, the synthesized compounds have contrasting sirtuin and PARP-1 inhibitory activities. We showed that modification on benzimidazoles may alter their selectivity toward sirtuin or PARP-1 enzymes. This offers an opportunity for further discovery and development of new promising sirtuin inhibitors. Molecular docking studies were carried out to aid the rationalization of these observations. Preliminary antiproliferative studies of selected compounds against nasopharyngeal cancer cells also showed relatively promising results.


Assuntos
Benzimidazóis/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/química , Sirtuínas/antagonistas & inibidores , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , Sirtuínas/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 23(15): 4669-4680, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26088338

RESUMO

Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Poli(ADP-Ribose) Polimerase-1 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA