Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928678

RESUMO

Scoliosis, characterized by spine deformity, is most common in adolescent idiopathic scoliosis (AIS). Manual Cobb angle measurement limitations underscore the need for automated tools. This study employed a vertebral landmark extraction method and Feedforward Neural Network (FNN) to predict scoliosis progression in 79 AIS patients. The novel intervertebral angles matrix format showcased results. The mean absolute error for the intervertebral angle progression was 1.5 degrees, while the Pearson correlation of the predicted Cobb angles was 0.86. The accuracy in classifying Cobb angles (<15°, 15-25°, 25-35°, 35-45°, >45°) was 0.85, with 0.65 sensitivity and 0.91 specificity. The FNN demonstrated superior accuracy, sensitivity, and specificity, aiding in tailored treatments for potential scoliosis progression. Addressing FNNs' over-fitting issue through strategies like "dropout" or regularization could further enhance their performance. This study presents a promising step towards automated scoliosis diagnosis and prognosis.

2.
Biomedicines ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275421

RESUMO

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity that is associated with low bone mineral density (BMD). Vitamin D (Vit-D) supplementation has been suggested to improve BMD in AIS, and its outcomes may be related to genetic factors. The present study aimed to (a) investigate the synergistic effect between a low BMD-related gene (wingless-related integration site 16, WNT16) and two important Vit-D pathway genes (Vit-D receptor, VDR, and Vit-D binding protein, VDBP) on serum Vit-D and bone qualities in Chinese AIS patients and healthy adolescents, and (b) to further investigate the effect of ablating Wnt16 on the cortical bone quality and whether diets with different dosages of Vit-D would further influence bone quality during the rapid growth phase in mice in the absence of Wnt16. A total of 519 girls (318 AIS vs. 201 controls) were recruited, and three selected single-nucleotide polymorphisms (SNPs) (WNT16 rs3801387, VDBP rs2282679, and VDR rs2228570) were genotyped. The serum 25(OH)Vit-D level was significantly associated with VDBP rs2282679 alleles (OR = -4.844; 95% CI, -7.521 to -2.167, p < 0.001). Significant multi-locus models were identified by generalized multifactor dimensionality reduction (GMDR) analyses on the serum 25(OH)Vit-D level (p = 0.006) and trabecular area (p = 0.044). In the gene-edited animal study, Wnt16 global knockout (KO) and wildtype (WT) male mice were provided with different Vit-D diets (control chow (1000 IU/Kg) vs. Vit-D-deficient chow (Nil in Vit-D) vs. high-dose Vit-D chow (20,000 IU/Kg)) from 4 weeks to 10 weeks old. Wnt16 global KO mice had significantly lower serum 25(OH)Vit-D levels and higher liver Vdbp mRNA expression levels than WT mice. In addition, Wnt16 global KO mice showed a decrease in bone density, cortical thickness and cortical area compared with WT mice. Interestingly, high-dose Vit-D chow led to lower bone density, cortical thickness, and cortical area in WT mice, which were less obvious in Wnt16 global KO mice. In conclusion, WNT16 may regulate the serum 25(OH)Vit-D level and bone qualities, which might be associated with VDBP expression. Further investigations with a larger sample size and wider spectrum of scoliosis severity are required to validate our findings regarding the interaction between WNT16 and Vit-D status in patients with AIS.

3.
Bioeng Transl Med ; 8(1): e10354, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684113

RESUMO

The high mortality rate of patients with diabetic foot ulcers is urging the appearance of an effective biomedical drug. Senescence is one of the major reasons of aging-induced decline in the diabetic wound. Our previous studies have demonstrated the anti-senescence effect of secretomes derived from human fetal mesenchymal stem cells (hfMSC). The present study tends to explore the potential role of hfMSC secretome (HFS) in wound healing through anti-aging. Meanwhile, we try to overcome several obstacles in the clinical application of stem cell secretome. A verticle bioreactor and microcarriers are employed to expand hfMSC and produce the HFS on a large scale. The HFS was then subjected to lyophilization (L-HFS). The PLGA (poly lactic-co-glycolic acid) particles were used to encapsulate and protect L-HFS from degradation in the streptozotocin (STZ)-induced diabetic rat model. Results showed that HFS-PLGA significantly enhanced wound healing by promoting vascularization and inhibiting inflammation in the skin wound bed. We further analyzed the contents of HFS. Isobaric tag for relative and absolute quantitation (ITRAQ) and label-free methods were used to identify peptides in the secretome. Bioinformatics analysis indicated that exosome production-related singling pathways and heat-shock protein family could be used as bio-functional markers and quality control for stem cell secretome production.

4.
Bioengineering (Basel) ; 9(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36290493

RESUMO

We develop a poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.

5.
FASEB J ; 31(9): 3800-3815, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28495756

RESUMO

Tendons are a mechanosensitive tissue, which enables them to transmit to bone forces that are derived from muscle. Patients with tendon injuries, such as tendinopathy or tendon rupture, were often observed with matrix degeneration, and the healing of tendon injuries remains a challenge as a result of the limited understanding of tendon biology. Our study demonstrates that the stretch-mediated activation channel, cystic fibrosis transmembrane conductance regulator (CFTR), was up-regulated in tendon-derived stem cells (TDSCs) during tenogenic differentiation under mechanical stretching. Tendon tissues in CFTR-dysfunctional DF508 mice exhibited irregular cell arrangement, uneven fibril diameter distribution, weak mechanical properties, and less matrix formation in a tendon defect model. Moreover, both tendon tissues and TDSCs isolated from DF508 mice showed significantly decreased levels of tendon markers, such as scleraxis, tenomodulin, Col1A1 (collagen type I α 1 chain), and decorin Furthermore, by RNA sequencing analysis, we demonstrated that Wnt/ß-catenin signaling was abnormally activated in TDSCs from DF508 mice, thereby further activating the pERK1/2 signaling pathway. Of most importance, we found that intervention in pERK1/2 signaling could promote tenogenic differentiation and tendon regeneration both in vitro and in vivo Taken together, our study demonstrates that CFTR plays an important role in tenogenic differentiation and tendon regeneration by inhibiting the ß-catinin/pERK1/2 signaling pathway. The therapeutic strategy of intervening in the CFTR/ß-catenin/pERK1/2 regulatory axis may be helpful for accelerating tendon injury healing, which has implications for tendon injury management.-Liu, Y., Xu, J., Xu, L., Wu, T., Sun, Y., Lee, Y.-W., Wang, B., Chan, H.-C., Jiang, X., Zhang, J., Li, G. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transdução de Sinais/fisiologia , Traumatismos dos Tendões/terapia , Tendões/citologia , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Células-Tronco/metabolismo , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
6.
Mol Biol Rep ; 40(3): 2533-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23187741

RESUMO

N-cadherin, a calcium-dependent cellular adhesive protein, plays important roles during embryonic development and bone formation. The potential of mesenchymal stem cells (MSCs) in osteoblast differentiation and homing to the sites of injury make it a promising cell resource for tissue engineering. However, the role of N-cadherin in MSCs osteoblast differentiation and migration remains still obscure. In the present study, our results showed that prolonged N-cadherin overexpression inhibited osteogenic differentiation of MSCs through negatively regulating ß-catenin and ERK1/2 signaling pathways. The mRNA expression levels of osteogenesis-related genes (Osteopontin, Osteocalcin, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone morphogenetic protein 2) were significantly inhibited by N-cadherin, as well as the ALP activity and calcium deposit as stained by Alizarin Red S. While, silencing N-cadherin using shRNA reversed this effect. Furthermore, ectopic bone formation conducted in nude mice verified that N-cadherin significantly inhibited ectopic bone formation of MSCs in vivo. In addition, we also found that the N-cadherin overexpression could promote the migration potential of MSCs. These findings reveal that N-cadherin inhibits osteogenesis but promotes migration of MSCs. The underlying mechanism of N-cadherin inhibiting osteogenesis may through suppressing ß-catenin and ERK1/2 signaling pathways.


Assuntos
Caderinas/genética , Movimento Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Animais , Diferenciação Celular , Expressão Gênica , Inativação Gênica , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/citologia , Camundongos , Interferência de RNA , beta Catenina/metabolismo
7.
PLoS One ; 7(8): e41264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952579

RESUMO

We found that Icaritin, an intestinal metabolite of Epimedium-derived flavonoids (EF) enhanced osteoblastic differentiation of mesenchymal stem cells (MSCs) only under osteogenic induction conditions. We also demonstrated its effect on inhibition of adipogenic differentiation of MSCs. Unlike the findings of others on EF compounds, we showed that Icaritin was unable to promote proliferation, migration and tube like structure formation by human umbilical vein endothelial cells (HUVECs) in vitro. These results suggested that the exogenous phytomolecule Icaritin possessed the potential for enhancing bone formation via its osteopromotive but not an osteoinductive mechanism. Though some flavonoids were shown to regulate the coupling process of angiogenesis and osteogenesis during bone repair, our results suggested that Icaritin did not have direct effect on enhancing angiogenesis in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Flavonoides/metabolismo , Neovascularização Patológica , Osteogênese/fisiologia , Células da Medula Óssea/citologia , Osso e Ossos/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/citologia , Flavonoides/farmacologia , Humanos , Técnicas In Vitro , Osteoblastos/citologia , Fenótipo , Células-Tronco/citologia , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA