RESUMO
This article presents a novel conceptual blueprint for an 'ideal', i.e., ecologically relevant, microplastic effect study. The blueprint considers how microplastics should be characterized and applied in laboratory experiments, and how biological responses should be measured to assure unbiased data that reliably reflect the effects of microplastics on aquatic biota. This 'ideal' experiment, although practically unachievable, serves as a backdrop to improve specific aspects of experimental research on microplastic effects. In addition, a systematic and quantitative literature review identified and quantified departures of published experiments from the proposed 'ideal' design. These departures are related mainly to the experimental design of microplastic effect studies failing to mimic natural environments, and experiments with limited potential to be scaled-up to ecosystem level. To produce a valid and generalizable assessment of the effect of microplastics on biota, a quantitative meta-analysis was performed that incorporated the departure of studies from the 'ideal' experiment (a measure of experimental quality) and inverse variance (a measure of the study precision) as weighting coefficients. Greater weights were assigned to experiments with higher quality and/or with lower variance in the response variables. This double-weighting captures jointly the technical quality, ecological relevance and precision of estimates provided in each study. The blueprint and associated meta-analysis provide an improved baseline for the design of ecologically relevant and technically sound experiments to understand the effects of microplastics on single species, populations and, ultimately, entire ecosystems.
Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análiseRESUMO
Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100-250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.